Nakane Daisuke

Department of Engineering ScienceAssociate Professor
Cluster III (Fundamental Science and Engineering)Associate Professor

Degree

  • PhD in Science, Osaka City University, Mar. 2010

Research Keyword

  • Bacteria
  • Cell motility
  • Optical Microscopy
  • Environmental Microbiology
  • Flagella
  • Flagellar wrapping
  • Type IV pili
  • Gliding motility
  • Rheotaxis
  • Phototaxis
  • Microfluidic device
  • Cyanobacteria
  • Flavobacteria
  • Spiroplasma
  • Mycoplasma
  • Cytoskeleton
  • Electron Microscopy

Field Of Study

  • Life sciences, Biophysics
  • Life sciences, Bacteriology

Career

  • Dec. 2023 - Present
    The University of Electro-Communications, Graduate School of Informatics and Engineering Department of Engineering Science, Associate Professor
  • Oct. 2020 - Nov. 2023
    The University of Electro-Communications, Graduate School of Informatics and Engineering Department of Engineering Science, Assistant Professor
  • Apr. 2013 - Sep. 2020
    Gakushuin University, Faculty of Science, 助教
  • Apr. 2011 - Mar. 2013
    Nagasaki University, Graduate School of Biomedical Sciences, 日本学術振興会 特別研究員 (PD)
  • Apr. 2009 - Mar. 2011
    Osaka City University, Graduate School of Science, 日本学術振興会 特別研究員 (DC1, PD)

Educational Background

  • Apr. 2008 - Mar. 2010
    Osaka City University, Graduate School of Science, 後期博士課程
  • Apr. 2006 - Mar. 2008
    Osaka City University, Graduate School of Science, 前期博士課程
  • Apr. 2002 - Mar. 2006
    Osaka City University, Faculty of Science, Department of Biology

Member History

  • Apr. 2024 - Mar. 2026
    シンポジウム企画調整委員会, 細菌学会, Society
  • Apr. 2024 - Mar. 2026
    評議員(学術集会員), 細菌学会関東支部会, Society
  • Apr. 2023 - Mar. 2025
    分野別専門委員(細胞運動), 生物物理学会, Society
  • Apr. 2023 - Mar. 2025
    理事, 生物物理学会, Society
  • Jul. 2021 - Jul. 2023
    Local Organizing Committees, International Organization for Mycoplasmology, Society
  • Jan. 2021 - Dec. 2021
    分野別専門委員(細胞運動), 生物物理学会, Society
  • Aug. 2013 - Aug. 2015
    ワーキンググループ, 細菌学若手コロッセウム, Society
  • Feb. 2014 - Jan. 2015
    世話人, 生体運動合同班会議, Society
  • Feb. 2010 - Jan. 2011
    世話人, 生体運動合同班会議, Society

Award

  • Oct. 2024
    日本微生物生態学会37回大会
    Burkholderia近縁種を対象としたドリル運動の流路幅依存性検証
    優秀発表賞, 島田佳季
    Japan society
  • Oct. 2024
    日本微生物生態学会37回大会
    微小流体デバイスを用いた Helicobacter 属細菌の運動戦略の可視化
    優秀発表賞, 横浜さらら
    Japan society
  • Jun. 2024
    IUPAB Congress 2024
    Water flow navigates the long journey of surface-associated bacteria living in hot springs
    IUPAB2024 Student and Early Career Researcher Poster Award, 上村直輝
    International society
  • Jun. 2024
    第20回21世紀大腸菌研究会
    温泉の水流がナビゲートする表面付着細菌の長旅
    優秀口頭発表賞, 上村直輝
    Japan society
  • Feb. 2024
    第14回 マイクロ・ナノ工学シンポジウム
    細菌のべん毛巻き付き運動解析のためのマイクロ流体デバイス
    優秀講演論文表彰, 島田 佳季;吉岡 青葉;中根 大介;菅 哲朗
    Japan society
  • Nov. 2023
    日本微生物生態学会第36回大会
    Symbiotic bacteria break through the host's narrow passage by flagellar wrapping
    Young Scientist Multidisciplinary Award, Aoba Yoshioka
  • Nov. 2023
    日本微生物生態学会第36回大会
    Water flow navigates the long journey of surface-associated bacteria living in hot springs
    Rising to the Challenge Award, Naoki Uemura
  • Nov. 2023
    第61回日本生物物理学会年会
    Symbiotic bacteria break through narrow passage by flagellar wrapping
    Student Presentation Award, Aoba Yoshioka
  • Aug. 2023
    American Society for Microbiology
    自然環境中の流れがナビゲートするⅣ型線毛細菌の長旅
    ASM Best Poster Award, 上村直輝
  • Jun. 2023
    Gordon Research Conference (Animal-Microbe Symbioses)
    Symbiotic bacteria break through the host's narrow gate by flagellar wrapping
    Poster Award, 吉岡 青葉
    International society
  • Mar. 2023
    日本細菌学会第96回総会
    デュアルモーターがIV型線毛依存的な走流性を可能にする
    優秀発表賞, 上村直輝
  • Nov. 2022
    日本微生物生態学会第35回大会
    ホソヘリカメムシの共生細菌は狭小空間をドリル戦車で泳ぐ
    優秀ポスター賞, 吉岡青葉
  • Nov. 2022
    日本微生物生態学会第35回大会
    デュアルモーターがIV型線毛依存的な走流性を可能にする
    最優秀ポスター賞, 上村直輝
  • Apr. 2021
    文部科学省
    バクテリア生体運動の高精度分子イメージングの研究
    科学技術分野の文部科学大臣表彰 若手研究者賞, 中根大介
    Japan society
  • 2017
    シアノバクテリアは光の向きを認識してIV型線毛を非対称に分布する
    日本生物物理学会 若手奨励賞, 中根大介
    Japan society
  • 2015
    細菌の滑走運動メカニズムに関する研究
    日本細菌学会 黒屋奨学賞, 中根大介
  • 2011
    マイコプラズマ滑走運動の“あし”の動きと、ささえる構造
    井上科学技術振興財団 研究奨励賞, 中根大介
  • Jul. 2010
    国際マイコプラズマ学会
    ルイスディーンズ賞(最優秀ポスター賞), 中根 大介
  • Jun. 2010
    日本マイコプラズマ学会
    ベストプレゼンティション賞, 中根 大介
  • 2010
    国際マイコプラズマ学会 Louis Dienes Award, 中根大介
    International society
  • 2009
    Mycoplasma mobile はシアル酸をつかんで 80 nm ずつ前進する
    日本マイコプラズマ学会 ベストプレゼンティション賞, 中根大介
    Japan society
  • Nov. 2007
    大阪市立大学
    学友会成績優秀賞受賞, 中根 大介

Paper

  • Evolution of a large periplasmic disk in Campylobacterota flagella enables both efficient motility and autoagglutination
    Eli J. Cohen; Tina Drobnič; Deborah A. Ribardo; Aoba Yoshioka; Trishant Umrekar; Xuefei Guo; Jose-Jesus Fernandez; Emma E. Brock; Laurence Wilson; Daisuke Nakane; David R. Hendrixson; Morgan Beeby
    Developmental Cell, Dec. 2024, Peer-reviwed, True, with international co-author(s)
    Scientific journal, English
  • Internal structure of Mycoplasma mobile gliding machinery analyzed by negative staining electron tomography
    Minoru Fukushima; Takuma Toyonaga; Yuhei O. Tahara; Daisuke Nakane; Makoto Miyata
    Biophysics and Physicobiology, Biophysical Society of Japan, 21, 2, e210015, May 2024, Peer-reviwed
    Scientific journal
  • Cell surface architecture of the cultivated DPANN archaeon Nanobdella aerobiophila
    Shingo Kato; Yuhei O. Tahara; Yuki Nishimura; Katsuyuki Uematsu; Takahiro Arai; Daisuke Nakane; Ayaka Ihara; Takayuki Nishizaka; Wataru Iwasaki; Takashi Itoh; Makoto Miyata; Moriya Ohkuma
    Journal of Bacteriology, 206, e00351-23., 22 Feb. 2024
    Scientific journal
  • Frontiers of microbial movement research
    Tohru Minamino; Daisuke Nakane; Shuichi Nakamura; Hana Kiyama; Yusuke V. Morimoto; Makoto Miyata
    Biophysics and Physicobiology, Biophysical Society of Japan, 20, e200033, Oct. 2023, Peer-reviwed
    Scientific journal
  • Rheotaxis in Mycoplasma gliding.
    Daisuke Nakane
    Lead, Microbiology and immunology, 67, 9, 389-395, Sep. 2023, Peer-reviwed, True, This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
    Scientific journal, English
  • Live Cell Imaging of the Twitching Motility of Cyanobacteria by High-Resolution Microscopy.
    Daisuke Nakane
    Lead, Methods in Molecular Biology, 2646, 255-263, Mar. 2023, Peer-reviwed, True, Many cyanobacteria show directional movement either toward or away from light sources. The cell movement, also known as twitching motility, is usually driven by type IV pili (T4P), a bacterial molecular machine. The machine generates a propulsion force through repeated cycles of extension and retraction of pilus filaments. Here, I describe a phototaxis assay for observing Synechocystis sp. PCC6803 and Thermosynechococcus vulcanus at the single-cell level with optical microscopy. By adding fluorescent beads, I also describe a method how to visualize the asymmetric activation of T4P during phototaxis.
    Scientific journal, English
  • Isolation and Visualization of Gliding Motility Machinery in Bacteroidota
    Satoshi Shibata; Daisuke Nakane
    Methods in Molecular Biology, Springer US, 267-276, 27 Feb. 2023, Peer-reviwed, Invited
    In book
  • Live Cell Imaging of Gliding Motility of Flavobacterium johnsoniae Under High-Resolution Microscopy
    Daisuke Nakane; Satoshi Shibata
    Lead, Methods in Molecular Biology, Springer US, 277-286, 27 Feb. 2023, Peer-reviwed, Invited
    In book
  • Filamentous structures in the cell envelope are associated with bacteroidetes gliding machinery
    Satoshi Shibata; Yuhei O. Tahara; Eisaku Katayama; Akihiro Kawamoto; Takayuki Kato; Yongtao Zhu; Daisuke Nakane; Keiichi Namba; Makoto Miyata; Mark J. McBride; Koji Nakayama
    Communications Biology, Springer Science and Business Media LLC, 6, 1, 94, 23 Jan. 2023, Peer-reviwed, Abstract

    Many bacteria belonging to the phylum Bacteroidetes move on solid surfaces, called gliding motility. In our previous study with the Bacteroidetes gliding bacterium Flavobacterium johnsoniae, we proposed a helical loop track model, where adhesive SprB filaments are propelled along a helical loop on the cell surface. In this study, we observed the gliding cell rotating counterclockwise about its axis when viewed from the rear to the advancing direction of the cell and revealed that one labeled SprB focus sometimes overtook and passed another SprB focus that was moving in the same direction. Several electron microscopic analyses revealed the presence of a possible multi-rail structure underneath the outer membrane, which was associated with SprB filaments and contained GldJ protein. These results provide insights into the mechanism of Bacteroidetes gliding motility, in which the SprB filaments are propelled along tracks that may form a multi-rail system underneath the outer membrane. The insights may give clues as to how the SprB filaments get their driving force.
    Scientific journal
  • Swimming Motility Assays of Spiroplasma.
    Daisuke Nakane
    Lead, Methods in Molecular Biology, 2646, 373-381, 2023, Peer-reviwed, Invited, True, Spiroplasma swim in liquids without the use of the bacterial flagella. This small helical bacterium propels itself by generating kinks that travel down the cell body. The kink translation is unidirectional, from the leading pole to the lagging pole, during cell swimming in viscous environments. This protocol describes a swimming motility assay of Spiroplasma eriocheiris for visualizing kink translations of the absolute handedness of the body helix with optical microscopy.
    Scientific journal, English
  • Interference of flagellar rotation up-regulates the expression of small RNA contributing to Bordetella pertussis infection.
    Yukihiro Hiramatsu; Takashi Nishida; Dendi Krisna Nugraha; Mayuko Osada-Oka; Daisuke Nakane; Katsumi Imada; Yasuhiko Horiguchi
    Science advances, 8, 51, eade8971, 21 Dec. 2022, Peer-reviwed, True, Bacterial small RNAs (sRNAs) posttranscriptionally regulate gene expressions involved in various biological processes, including pathogenicity. Our previous study identified sRNAs, the expression of which was up-regulated in Bordetella pertussis, the causative agent of whooping cough, upon tracheal colonization of the bacteria; however, their roles in bacterial infection remain unknown. Here, we found that one sRNA, Bpr4, contributes to B. pertussis infection by posttranscriptionally up-regulating filamentous hemagglutinin (FHA), a major adhesin of the bacteria. Bpr4 bound to the 5' untranslated region of fhaB mRNA encoding FHA and inhibited its degradation mediated by RNaseE. Our results demonstrated that Bpr4 up-regulation was triggered by the interference of flagellar rotation, which caused the disengagement of MotA, a flagellar stator. Subsequently, MotA activated a diguanylate cyclase to generate cyclic di-GMP, which plays a role in Bpr4 up-regulation through the RisK/RisA two-component system. Our findings indicate that a flagellum-triggered sensory system contributes to B. pertussis infection.
    Scientific journal, English
  • Self-Assembled Micro-Sized Hexagons Built from Short DNA in a Crowded Environment.
    Tetsunao Makino; Daisuke Nakane; Makiko Tanaka
    Chembiochem : a European journal of chemical biology, 23, 22, e202200360, 18 Nov. 2022, Peer-reviwed, True, DNA programmable structures of various morphologies have attracted extensive attention due to their potential for materials science and biomedical applications. Here, we report the formation of micro-sized hexagons via assembly of only one pair of short double-stranded DNA in buffer-salt poly(ethylene glycol) solution. Each DNA strand had complementary bases with a two-base overhang. The procedure of heating and subsequent cooling of blunt-ended double-stranded DNA resulted in different assemblies. These results indicated that end-to-end adhesion at the terminals induced by complementary overhangs were required to construct the hexagonal DNA assemblies. The stable formation of the hexagons was highly dependent on heating temperature. In addition, concentration adjustments of DNA and poly(ethylene glycol) were essential. Circular dichroism spectral measurements and polarization microscopy observations indicated parallel alignment of double-stranded DNA in the hexagonal platelet. Self-assembled micro-sized hexagons composed of simple building blocks may have great potential for future biomedical device development.
    Scientific journal, English
  • Cell shape controls rheotaxis in small parasitic bacteria
    Daisuke Nakane; Yoshiki Kabata; Takayuki Nishizaka
    Lead, PLOS Pathogens, 18, 7, e1010648, 14 Jul. 2022, Peer-reviwed
    Scientific journal
  • A Multi-Rail Structure in the Cell Envelope for the Bacteroidetes Gliding Machinery
    Satoshi Shibata; Yuhei O. Tahara; Eisaku Katayama; Akihiro Kawamoto; Takayuki Kato; Yongtao Zhu; Daisuke Nakane; Keiichi Namba; Makoto Miyata; Mark J. McBride; Koji Nakayama
    Research Square, Research Square Platform LLC, 30 Jun. 2022, Abstract

    Many bacteria belonging to the phylum Bacteroidetes move on solid surfaces, which is called gliding motility. In our previous study with the Bacteroidetes gliding bacterium Flavobacterium johnsoniae, we proposed a helical loop track model, where adhesive SprB filaments are propelled along a left-handed closed helical loop on the cell surface. Attachment of SprB to the substratum results in cell movement. In this study, we observed the gliding cell rotating counterclockwise about its axis when viewed from the rear to the advancing direction of the cell, which was consistent with the helical loop track model. Total internal reflection fluorescence microscopy of SprB on a gliding cell revealed that one labeled SprB focus sometimes overtook and passed another SprB focus that was moving in the same direction, suggesting the presence of multiple lanes in the helical loop track. Several electron microscopic analyses revealed the presence of a multi-rail structure underneath the outer membrane, which was associated with SprB filaments and contained GldJ protein. A similar structure was observed in the distantly related marine gliding Bacteroidetes Saprospira grandis. These results provide new insights into the mechanism of Bacteroidetes gliding motility, in which the SprB filaments are propelled along the multi-rails underneath the outer membrane.
    Scientific journal
  • Thermosynechococcus switches the direction of phototaxis by a c-di-GMP-dependent process with high spatial resolution
    Daisuke Nakane; Gen Enomoto; Heike Bähre; Yuu Hirose; Annegret Wilde; Takayuki Nishizaka
    Lead, eLife, 11, 73405, 10 May 2022, Peer-reviwed, True, Many cyanobacteria, which use light as an energy source via photosynthesis, show directional movement towards or away from a light source. However, the molecular and cell biological mechanisms for switching the direction of movement remain unclear. Here, we visualized type IV pilus-dependent cell movement in the rod-shaped thermophilic cyanobacterium Thermosynechococcus vulcanus using optical microscopy at physiological temperature and light conditions. Positive and negative phototaxis were controlled on a short time scale of 1 min. The cells smoothly moved over solid surfaces towards green light, but the direction was switched to backward movement when we applied additional blue light illumination. The switching was mediated by three photoreceptors, SesA, SesB, and SesC, which have cyanobacteriochrome photosensory domains and synthesis/degradation activity of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Our results suggest that the decision-making process for directional switching in phototaxis involves light-dependent changes in the cellular concentration of c-di-GMP. Direct visualization of type IV pilus filaments revealed that rod-shaped cells can move perpendicular to the light vector, indicating that the polarity can be controlled not only by pole-to-pole regulation but also within-a-pole regulation. This study provides insights into previously undescribed rapid bacterial polarity regulation via second messenger signalling with high spatial resolution.
    Scientific journal, English
  • Design Principles of the Rotary Type 9 Secretion System
    Abhishek Trivedi; Jitendrapuri Gosai; Daisuke Nakane; Abhishek Shrivastava
    Frontiers in Microbiology, Frontiers Media {SA}, 13, 845563, 10 May 2022, Peer-reviwed, Invited, The Fo ATP synthase, the bacterial flagellar motor, and the bacterial type 9 secretion system (T9SS) are the three known proton motive force driven biological rotary motors. In this review, we summarize the current information on the nuts and bolts of T9SS. Torque generation by T9SS, its role in gliding motility of bacteria, and the mechanism via which a T9SS-driven swarm shapes the microbiota are discussed. The knowledge gaps in our current understanding of the T9SS machinery are outlined.
    Scientific journal
  • Molecular ruler of the attachment organelle in Mycoplasma pneumoniae
    Daisuke Nakane; Kohki Murata; Tsuyoshi Kenri; Keigo Shibayama; Takayuki Nishizaka
    Lead, PLOS Pathogens, Public Library of Science (PLoS), 17, 6, e1009621, 10 Jun. 2021, Peer-reviwed, Length control is a fundamental requirement for molecular architecture. Even small wall-less bacteria have specially developed macro-molecular structures to support their survival. Mycoplasma pneumoniae, a human pathogen, forms a polar extension called an attachment organelle, which mediates cell division, cytadherence, and cell movement at host cell surface. This characteristic ultrastructure has a constant size of 250–300 nm, but its design principle remains unclear. In this study, we constructed several mutants by genetic manipulation to increase or decrease coiled-coil regions of HMW2, a major component protein of 200 kDa aligned in parallel along the cell axis. HMW2-engineered mutants produced both long and short attachment organelles, which we quantified by transmission electron microscopy and fluorescent microscopy with nano-meter precision. This simple design of HMW2 acting as a molecular ruler for the attachment organelle should provide an insight into bacterial cellular organization and its function for their parasitic lifestyles.
    Scientific journal
  • Large-scale vortices with dynamic rotation emerged from monolayer collective motion of gliding Flavobacteria
    Daisuke Nakane; Shoko Odaka; Kana Suzuki; Takayuki Nishizaka
    Lead, Journal of Bacteriology, 203, e00073-21, 26 Apr. 2021, Peer-reviwed, True, A collective motion of self-driven particles has been a fascinating subject in physics and biology. Sophisticated macroscopic behavior emerges through a population in thousands or millions of bacterial cells, propelling itself by flagellar rotation and its chemotactic response. Here we found a series of collective motions accompanying successive phase-transitions in a non-flagellated rod-shaped soil bacterium, Flavobacterium johnsoniae, which was driven by a surface cell movement known as gliding motility. When we spot the cells on an agar plate with a low level of nutrients, the bacterial community exhibited vortex patterns that spontaneously appeared as lattice and integrated into a large-scale circular plate. All patterns exhibit with monolayer of bacteria, which enable to visualize an individual cell with a high resolution among a wide-range pattern two-dimensionally. The single cells moved at random orientation, but the cells connected with one another showed left-turn biased trajectories in starved environment. This feature is possibly due to the collision of cells inducing a nematic alignment of dense cells as self-propelled rods. Subsequently, each vortex oscillated independently, and then transformed to the rotating mode as an independent circular plate. Notably, the rotational direction of the circular plate was counterclockwise without exception. The plates developed accompanying rotation with constant angular velocity, suggesting that the mode is an efficient strategy for bacterial survival.ImportanceSelf-propelled bacteria propelled by flagella rotation often display highly organized dynamic patterns at high cell densities. Here we found a new mode of collective motion in non-flagellated bacteria: vortex patterns were spontaneously appeared as lattice and integrated into a large-scale circular plate comprising hundreds of thousands of cells, which exhibited unidirectional rotation in a counterclockwise manner and expanded in size on agar. A series of collective motions was driven by gliding motility of the rod-shaped soil bacterium Flavobacterium johnsoniae In a low nutrient environment, single cells moved at random orientation while cells at high density moved together as a unitary cluster. This might be an efficient strategy for cells of this species to find nutrients.
    Scientific journal, English
  • Novel Applications of 3D Localization Microscopy to a Variety of Molecular Motors
    Takayuki NISHIZAKA; Takanobu A. KATOH; Daisuke NAKANE
    Seibutsu Butsuri, Biophysical Society of Japan, 61, 6, 395-397, 2021
    Scientific journal
  • Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella
    Eli J. Cohen; Daisuke Nakane; Yoshiki Kabata; David R. Hendrixson; Takayuki Nishizaka; Morgan Beeby
    Lead, PLOS Pathogens, Public Library of Science ({PLoS}), 16, 7, e1008620, 02 Jul. 2020, Peer-reviwed, True, Campylobacter jejuni rotates a flagellum at each pole to swim through the viscous mucosa of its hosts' gastrointestinal tracts. Despite their importance for host colonization, however, how C. jejuni coordinates rotation of these two opposing flagella is unclear. As well as their polar placement, C. jejuni's flagella deviate from the norm of Enterobacteriaceae in other ways: their flagellar motors produce much higher torque and their flagellar filament is made of two different zones of two different flagellins. To understand how C. jejuni's opposed motors coordinate, and what contribution these factors play in C. jejuni motility, we developed strains with flagella that could be fluorescently labeled, and observed them by high-speed video microscopy. We found that C. jejuni coordinates its dual flagella by wrapping the leading filament around the cell body during swimming in high-viscosity media and that its differentiated flagellar filament and helical body have evolved to facilitate this wrapped-mode swimming.
    Scientific journal, English
  • Coexistence of Two Chiral Helices Produces Kink Translation in Spiroplasma Swimming
    Daisuke Nakane; Tatsuro Ito; Takayuki Nishizaka
    Lead, Journal of Bacteriology, American Society for Microbiology, 202, 8, e00735-19, 10 Feb. 2020, Peer-reviwed, True, The mechanism underlying Spiroplasma swimming is an enigma. This small bacterium possesses two helical shapes with opposite-handedness at a time, and the boundary between them, called a kink, travels down, possibly accompanying the dual rotations of these physically connected helical structures, without any rotary motors such as flagella. Although the outline of dynamics and structural basis has been proposed, the underlying cause to explain the kink translation is missing. We here demonstrated that the cell morphology of Spiroplasma eriocheiris was fixed at the right-handed helix after motility was stopped by the addition of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the preferential state was transformed to the other-handedness by the trigger of light irradiation. This process coupled with the generation and propagation of the artificial kink, presumably without any energy input through biological motors. These findings indicate that the coexistence of two chiral helices is sufficient to propagate the kink and thus to propel the cell body.IMPORTANCE Many swimming bacteria generate a propulsion force by rotating helical filaments like a propeller. However, the nonflagellated bacteria Spiroplasma spp. swim without the use of the appendages. The tiny wall-less bacteria possess two chiral helices at a time, and the boundary called a kink travels down, possibly accompanying the dual rotations of the helices. To solve this enigma, we developed an assay to determine the handedness of the body helices at the single-wind level, and demonstrated that the coexistence of body helices triggers the translation of the kink and that the cell body moves by the resultant cell bend propagation. This finding provides us a totally new aspect of bacterial motility, where the body functions as a transformable screw to propel itself forward.
    Scientific journal, English
  • 動きの可視化から紐解くバクテリアの新しい世界
    中根大介; 西坂崇之
    日本乳酸菌学会誌, 31, 10, 2020, Peer-reviwed, Invited
    Scientific journal, Japanese
  • Tree of motility - A proposed history of motility systems in the tree of life.
    Makoto Miyata; Robert C Robinson; Taro Q P Uyeda; Yoshihiro Fukumori; Shun-Ichi Fukushima; Shin Haruta; Michio Homma; Kazuo Inaba; Masahiro Ito; Chikara Kaito; Kentaro Kato; Tsuyoshi Kenri; Yoshiaki Kinosita; Seiji Kojima; Tohru Minamino; Hiroyuki Mori; Shuichi Nakamura; Daisuke Nakane; Koji Nakayama; Masayoshi Nishiyama; Satoshi Shibata; Katsuya Shimabukuro; Masatada Tamakoshi; Azuma Taoka; Yosuke Tashiro; Isil Tulum; Hirofumi Wada; Ken-Ichi Wakabayashi
    Genes to Cells, 25, 1, 6-21, Jan. 2020, Peer-reviwed, True, Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement-producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
    Scientific journal, English
  • Refined Mechanism of Mycoplasma mobile Gliding Based on Structure, ATPase Activity, and Sialic Acid Binding of Machinery
    Miyuki S. Nishikawa; Daisuke Nakane; Takuma Toyonaga; Akihiro Kawamoto; Takayuki Kato; Keiichi Namba; Makoto Miyata
    Lead, mBio, American Society for Microbiology, 10, 6, e02846-19, 24 Dec. 2019, Peer-reviwed
    Scientific journal
  • Preparation of Actinoplanes missouriensis Zoospores and Assay for Their Adherence to Solid Surfaces.
    Takeaki Tezuka; Daisuke Nakane; Tomohiro Kimura; Yasuo Ohnishi
    Bio-protocol, 9, 24, e3458, 20 Dec. 2019, True, Spherical zoospores of a rare actinomycete, Actinoplanes missouriensis, adhere to various hydrophobic solid surfaces by means of type IV pili. The purpose of this protocol is to provide detailed descriptions of the preparation of A. missouriensis zoospores and an assay for the adhesion of the zoospores to solid surfaces. This adhesion assay, which measures numbers of zoospores that adhered to the dish surface and swimming zoospores in a tunnel chamber by using a phase-contrast microscope, can also be used for swimming cells of other microorganisms.
    Scientific journal, English
  • Motor torque measurement of Halobacterium salinarum archaellar suggests a general model for ATP-driven rotary motors
    Seiji Iwata; Yoshiaki Kinosita; Nariya Uchida; Daisuke Nakane; Takayuki Nishizaka
    Corresponding, Communications Biology, Springer Science and Business Media {LLC}, 2, 199, Dec. 2019, Peer-reviwed
    Scientific journal
  • Single-molecule pull-out manipulation of the shaft of the rotary motor F1-ATPase
    Tatsuya M. Naito; Tomoko Masaike; Daisuke Nakane; Mitsuhiro Sugawa; Kaoru A. Okada; Takayuki Nishizaka
    Scientific Reports, Springer Science and Business Media {LLC}, 9, 15562, Dec. 2019, Peer-reviwed
    Scientific journal
  • Insights into the mechanism of ATP-driven rotary motors from direct torque measurement.
    Takayuki Nishizaka; Tomoko Masaike; Daisuke Nakane
    Biophysical reviews, 11, 4, 653-657, Aug. 2019, Peer-reviwed, True, Motor proteins are molecular machines that convert chemical energy into mechanical work. In addition to existing studies performed on the linear motors found in eukaryotic cells, researchers in biophysics have also focused on rotary motors such as F1-ATPase. Detailed studies on the rotary F1-ATPase motor have correlated all chemical states to specific mechanical events at the single-molecule level. Recent studies showed that there exists another ATP-driven protein motor in life: the rotary machinery that rotates archaeal flagella (archaella). Rotation speed, stepwise movement, and variable directionality of the motor of Halobacterium salinarum were described in previous studies. Here we review recent experimental work discerning the molecular mechanism underlying how the archaellar motor protein FlaI drives rotation by generation of motor torque. In combination, those studies found that rotation slows as the viscous drag of markers increases, but torque remains constant at 160 pN·nm independent of rotation speed. Unexpectedly, the estimated work done in a single rotation is twice the expected energy that would come from hydrolysis of six ATP molecules in the FlaI hexamer. To reconcile the apparent contradiction, a new and general model for the mechanism of ATP-driven rotary motors is discussed.
    English
  • Characterization of Zoospore Type IV Pili in Actinoplanes missouriensis
    Tomohiro Kimura; Takeaki Tezuka; Daisuke Nakane; Takayuki Nishizaka; Shin-Ichi Aizawa; Yasuo Ohnishi; Victor J. DiRita
    Journal of Bacteriology, American Society for Microbiology, 201, 14, e00746-18, 29 Apr. 2019, Peer-reviwed
    Scientific journal
  • Three-dimensional tracking of microbeads attached to the tip of single isolated tracheal cilia beating under external load
    Takanobu A. Katoh; Koji Ikegami; Nariya Uchida; Toshihito Iwase; Daisuke Nakane; Tomoko Masaike; Mitsutoshi Setou; Takayuki Nishizaka
    Scientific Reports, Springer Nature, 8, 15562, Oct. 2018, Peer-reviwed
    Scientific journal
  • Identification of a major glucose transporter in Flavobacterium johnsoniae: Inhibition of F. johnsoniae colony spreading by glucose uptake.
    Imamura K; Sato K; Narita Y; Kondo Y; Nakane D; Naito M; Fujiwara T; Nakayama K
    Microbiology and immunology, 62, 8, 507-516, Aug. 2018, Peer-reviwed
    Scientific journal
  • Immunoglobulin-like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system.
    Sato K; Kakuda S; Yukitake H; Kondo Y; Shoji M; Takebe K; Narita Y; Naito M; Nakane D; Abiko Y; Hiratsuka K; Suzuki M; Nakayama K
    Molecular microbiology, 110, 64-81, Jul. 2018, Peer-reviwed
    Scientific journal
  • Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body
    Yoshiaki Kinosita; Yoshitomo Kikuchi; Nagisa Mikami; Daisuke Nakane; Takayuki Nishizaka
    The ISME Journal, Springer Nature, 12, 3, 838-848, 21 Mar. 2018, Peer-reviwed
    Scientific journal
  • Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria
    Daisuke Nakane; Takayuki Nishizaka
    Lead, Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, 114, 25, 6593-6598, 20 Jun. 2017, Peer-reviwed
    Scientific journal
  • Chemotaxis without Conventional Two-Component System, Based on Cell Polarity and Aerobic Conditions in Helicity-Switching Swimming of Spiroplasma eriocheiris
    Peng Liu; Huajun Zheng; Qingguo Meng; Natsuho Terahara; Wei Gu; Shengyue Wang; Guoping Zhao; Daisuke Nakane; Wen Wang; Makoto Miyata
    Frontiers in Microbiology, Frontiers Media {SA}, 8, 58, 03 Feb. 2017, Peer-reviwed
    Scientific journal, English
  • Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum
    Yoshiaki Kinosita; Nariya Uchida; Daisuke Nakane; Takayuki Nishizaka
    Nature Microbiology, Springer Nature, 1, 11, 16148-16148, Aug. 2016, Peer-reviwed
    Scientific journal, English
  • Directed Binding of Gliding Bacterium,Mycoplasma mobile, Shown by Detachment Force and Bond Lifetime
    Akihiro Tanaka; Daisuke Nakane; Masaki Mizutani; Takayuki Nishizaka; Makoto Miyata
    mBio, American Society for Microbiology, 7, 3, e00455-16, Jun. 2016, Peer-reviwed
    Scientific journal
  • Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae
    Daisuke Nakane; Tsuyoshi Kenri; Lisa Matsuo; Makoto Miyata
    Lead, PLOS Pathogens, Public Library of Science ({PLoS}), 11, 12, e1005299, 2015, Peer-reviwed
    Scientific journal
  • Flavobacterium gliding motility and the type IX secretion system
    Mark J McBride; Daisuke Nakane
    Current Opinion in Microbiology, Elsevier {BV}, 28, 72-77, 2015, Peer-reviwed, True, Cells of Flavobacterium johnsoniae crawl rapidly over surfaces in a process called gliding motility. These cells do not have flagella or pili but instead rely on a novel motility machine composed of proteins that are unique to the phylum Bacteroidetes. The motility adhesins SprB and RemA are propelled along the cell surface by the still poorly-defined gliding motor. Interaction of these adhesins with a surface results in translocation of the cell. SprB and RemA are delivered to the cell surface by the type IX secretion system (T9SS). T9SSs are confined to but common in the phylum Bacteroidetes. Transmembrane components of the T9SS may perform roles in both secretion and gliding motility.
    Scientific journal, English
  • Bacteriocin Protein BacL1of Enterococcus faecalis Targets Cell Division Loci and Specifically Recognizes l-Ala2-Cross-Bridged Peptidoglycan
    Jun Kurushima; Daisuke Nakane; Takayuki Nishizaka; Haruyoshi Tomita; P. J. Christie
    Journal of Bacteriology, American Society for Microbiology, 197, 2, 286-295, 03 Nov. 2014, Peer-reviwed
    Scientific journal
  • Lack of a surface layer in Tannerella forsythia mutants deficient in the type IX secretion system.
    Narita Y; Sato K; Yukitake H; Shoji M; Nakane D; Nagano K; Yoshimura F; Naito M; Nakayama K
    Microbiology, 160, Pt 10, 2295-2303, Oct. 2014, Peer-reviwed, Narita Y, Sato K, Yukitake H, Shoji M, Nakane D, Nagano K, Yoshimura F, Naito M, Nakayama K, Microbiology (Reading, England), 2014, vol. 160, no. Pt 10, pp. 2295-2303, 2014
    Scientific journal
  • Unitary step of gliding machinery in Mycoplasma mobile
    Yoshiaki Kinosita; Daisuke Nakane; Mitsuhiro Sugawa; Tomoko Masaike; Kana Mizutani; Makoto Miyata; Takayuki Nishizaka
    Lead, Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, 111, 23, 8601-8606, 27 May 2014, Peer-reviwed, Significance

    The mechanism of movement of bacteria shows extensive diversity, and some bacteria glide on the substrate surface via an unknown process. Mycoplasma mobile is one of the fastest, exhibiting smooth gliding movement with a speed of 2.0–4.5 µm/s. By applying the modified in vitro ghost model of Mycoplasma mobile to high precision colocalization microscopy, steps of the regular size, ∼70 nm, were detected for the first time in bacteria, to our knowledge. The binding target of the gliding machinery, sialylated oligosaccharides, was expected to be randomly oriented on the surface and, thus, our results suggest that the machinery can drive the steps with a cycle of attachment and detachment even if there is no periodic structure on the substrate.
    Scientific journal
  • Gliding mechanism of the Mycoplasma pneumoniaesubgroup
    Makoto Miyata; Daisuke Nakane
    Mollicutes: Molecular Biology and Pathogenesis, 237-253, Jan. 2014, Peer-reviwed
  • Bidirectional Bacterial Gliding Motility Powered by the Collective Transport of Cell Surface Proteins
    Hirofumi Wada; Daisuke Nakane; Hsuan-Yi Chen
    Physical Review Letters, American Physical Society (APS), 111, 248102, 11 Dec. 2013, Peer-reviwed
    Scientific journal
  • Helical flow of surface protein required for bacterial gliding motility
    Daisuke Nakane; Keiko Sato; Hirofumi Wada; Mark J. McBride; Koji Nakayama
    Lead, Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, 110, 27, 11145-11150, 18 Jun. 2013, Peer-reviwed, Cells of Flavobacterium johnsoniae and of many other members of the phylum Bacteroidetes exhibit rapid gliding motility over surfaces by a unique mechanism. These cells do not have flagella or pili; instead, they rely on a novel motility apparatus composed of Gld and Spr proteins. SprB, a 669-kDa cell-surface adhesin, is required for efficient gliding. SprB was visualized by electron microscopy as thin 150-nm-long filaments extending from the cell surface. Fluorescence microscopy revealed movement of SprB proteins toward the poles of the cell at ∼2 μm/s. The fluorescent signals appeared to migrate around the pole and continue at the same speed toward the opposite pole along an apparent left-handed helical closed loop. Movement of SprB, and of cells, was rapidly and reversibly blocked by the addition of carbonyl cyanide m -chlorophenylhydrazone, which dissipates the proton gradient across the cytoplasmic membrane. In a gliding cell, some of the SprB protein appeared to attach to the substratum. The cell body moved forward and rotated with respect to this point of attachment. Upon reaching the rear of the cell, the attached SprB often was released from the substratum, and apparently recirculated to the front of the cell along a helical path. The results suggest a model for Flavobacterium gliding, supported by mathematical analysis, in which adhesins such as SprB are propelled along a closed helical loop track, generating rotation and translation of the cell body.
    Scientific journal
  • Decoding system for the AUA codon by tRNA Ile with the UAU anticodon in Mycoplasma mobile
    Takaaki Taniguchi; Kenjyo Miyauchi; Daisuke Nakane; Makoto Miyata; Akira Muto; Susumu Nishimura; Tsutomu Suzuki
    Nucleic Acids Research, Oxford University Press (OUP), 41, 4, 2621-2631, 07 Jan. 2013, Peer-reviwed
    Scientific journal
  • Role of Binding in Mycoplasma mobile and Mycoplasma pneumoniae Gliding Analyzed through Inhibition by Synthesized Sialylated Compounds
    Taishi Kasai; Daisuke Nakane; Hideharu Ishida; Hiromune Ando; Makoto Kiso; Miyata Miyata
    Journal of Bacteriology, American Society for Microbiology, 195, 3, 429-435, 02 Nov. 2012, Peer-reviwed
    Scientific journal
  • Flavobacterium johnsoniae RemA Is a Mobile Cell Surface Lectin Involved in Gliding
    Abhishek Shrivastava; Ryan G. Rhodes; Soumya Pochiraju; Daisuke Nakane; Mark J. McBride
    Journal of Bacteriology, American Society for Microbiology, 194, 14, 3678-3688, 15 Jul. 2012, Peer-reviwed, ABSTRACT

    Cells of Flavobacterium johnsoniae move rapidly over surfaces by a process known as gliding motility. Gld proteins are thought to comprise the motor that propels the cell surface adhesin SprB. Cells with mutations in sprB are partially defective in motility and are also resistant to some bacteriophages. Transposon mutagenesis of a strain carrying a deletion spanning sprB identified eight mutants that were resistant to additional phages and exhibited reduced motility. Four of the mutants had transposon insertions in remA , which encodes a cell surface protein that has a lectin domain and appears to interact with polysaccharides. Three other genes identified in this screen ( remC , wza , and wzc ) encode proteins predicted to be involved in polysaccharide synthesis and secretion. Myc-tagged versions of RemA localized to the cell surface and were propelled rapidly along the cell at speeds of 1 to 2 μm/s. Deletion of gldN and gldO , which encode components of a bacteroidete protein secretion system, blocked the transport of RemA to the cell surface. Overexpression of RemA resulted in the formation of cell aggregates that were dispersed by the addition of galactose or rhamnose. Cells lacking RemC, Wza, and Wzc failed to aggregate. Cells of a remC mutant and cells of a remA mutant, neither of which formed aggregates in isolation, aggregated when they were mixed together, suggesting that polysaccharides secreted by one cell may interact with RemA on another cell. Fluorescently labeled lectin Ricinus communis agglutinin I detected polysaccharides secreted by F. johnsoniae . The polysaccharides bound to cells expressing RemA and were rapidly propelled on the cell surface. RemA appears to be a mobile cell surface adhesin, and secreted polysaccharides may interact with the lectin domain of RemA and enhance motility.
    Scientific journal
  • “Mycoplasmal Antigen Modulation,” a Novel Surface Variation Suggested for a Lipoprotein Specifically Localized on Mycoplasma mobile
    Heng Ning Wu; Chie Kawaguchi; Daisuke Nakane; Makoto Miyata
    Current Microbiology, Springer Nature, 64, 5, 433-440, Feb. 2012, Peer-reviwed
    Scientific journal
  • Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)
    Chikara Sato; Sachie Manaka; Daisuke Nakane; Hidetoshi Nishiyama; Mitsuo Suga; Takayuki Nishizaka; Makoto Miyata; Yuusuke Maruyama
    Biochemical and Biophysical Research Communications, Elsevier BV, 417, 4, 1213-1218, Jan. 2012, Peer-reviwed
    Scientific journal
  • Mycoplasma mobile Cells Elongated by Detergent and Their Pivoting Movements in Gliding
    Daisuke Nakane; Makoto Miyata
    Lead, Journal of Bacteriology, American Society for Microbiology, 194, 1, 122-130, 14 Oct. 2011, Peer-reviwed
    Scientific journal
  • Isolation and Characterization of P1 Adhesin, a Leg Protein of the Gliding Bacterium Mycoplasma pneumoniae
    Daisuke Nakane; Jun Adan-Kubo; Tsuyoshi Kenri; Makoto Miyata
    Lead, Journal of Bacteriology, American Society for Microbiology, 193, 3, 715-722, Feb. 2011, Peer-reviwed, ABSTRACT

    Mycoplasma pneumoniae , a pathogen causing human pneumonia, binds to solid surfaces at its membrane protrusion and glides by a unique mechanism. In this study, P1 adhesin, which functions as a “leg” in gliding, was isolated from mycoplasma culture and characterized. Using gel filtration, blue-native polyacrylamide gel electrophoresis (BN-PAGE), and chemical cross-linking, the isolated P1 adhesin was shown to form a complex with an accessory protein named P90. The complex included two molecules each of P1 adhesin and P90 (protein B), had a molecular mass of about 480 kDa, and was observed by electron microscopy to form 20-nm-diameter spheres. Partial digestion of isolated P1 adhesin by trypsin showed that the P1 adhesin molecule can be divided into three domains, consistent with the results from trypsin treatment of the cell surface. Sequence analysis of P1 adhesin and its orthologs showed that domain I is well conserved and that a transmembrane segment exists near the link between domains II and III.
    Scientific journal
  • Cytoskeletal Asymmetrical Dumbbell Structure of a Gliding Mycoplasma, Mycoplasma gallisepticum , Revealed by Negative-Staining Electron Microscopy
    Daisuke Nakane; Makoto Miyata
    Lead, Journal of Bacteriology, American Society for Microbiology, 191, 10, 3256-3264, 15 May 2009, Peer-reviwed, ABSTRACT

    Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum , an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae . Next, to elucidate the cytoskeletal structure of M. gallisepticum , we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.
    Scientific journal
  • Regions on Gli349 and Gli521 Protein Molecules Directly Involved in Movements of Mycoplasma mobile Gliding Machinery, Suggested by Use of Inhibitory Antibodies and Mutants
    Atsuko Uenoyama; Shintaro Seto; Daisuke Nakane; Makoto Miyata
    Journal of Bacteriology, American Society for Microbiology, 191, 6, 1982-1985, 15 Mar. 2009, Peer-reviwed, ABSTRACT

    Mycoplasma mobile glides on solid surfaces by use of a unique mechanism that involves two large proteins, Gli349 and Gli521. Here we isolated and analyzed two antibodies and three mutants that modified mycoplasma gliding. Mapping of the target points of antibodies and mutations currently available suggested that a 301-amino-acid region on the whole 3,138-amino-acid sequence, a C-terminal region of Gli349, and an N-terminal region of Gli521 are directly involved in the movements of the gliding machinery.
    Scientific journal
  • Cytoskeletal “jellyfish” structure of Mycoplasma mobile
    Daisuke Nakane; Makoto Miyata
    Lead, Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, 104, 49, 19518-19523, 04 Dec. 2007, Peer-reviwed, Mycoplasma mobile , a parasitic bacterium lacking a peptidoglycan layer, glides on solid surfaces in the direction of a membrane protrusion at a cell pole by a unique mechanism. Recently, we proposed a working model in which cells are propelled by leg proteins clustering at the protrusion's base. The legs repeatedly catch and release sialic acids on the solid surface, a motion that is driven by the force generated by ATP hydrolysis. Here, to clarify the subcellular structure supporting the gliding force and the cell shape, we stripped the membrane by Triton X-100 and identified a unique structure, designated the “jellyfish” structure. In this structure, an oval solid “bell” ≈235 wide and 155 nm long is filled with a 12-nm hexagonal lattice and connected to this structure are dozens of flexible “tentacles” that are covered with particles of 20-nm diameter at intervals of ≈30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The relation of this structure to the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding. We identified 10 proteins as the components by mass spectrometry and found that these do not show sequence similarities with other proteins of bacterial cytoskeletons or the gliding proteins previously identified. Immunofluorescence and immunoelectron microscopy revealed that two components are localized at the bell and another that has the structure similar to the F 1 -ATPase β subunit is localized at the tentacles.
    Scientific journal

MISC

  • 精密3次元位置検出が拓く多様な分子モーター研究への新しいアプローチ
    西坂崇之; 加藤孝信; 中根大介
    2021, 生物物理, 61, 395-397, Japanese, Peer-reviwed, Introduction scientific journal
  • シアノバクテリアの運動
    中根大介; 西坂崇之
    May 2018, 生物工学会誌, 96, 5, 244‐247, Japanese, Peer-reviwed, Invited, 0919-3758, 201802237613774240
  • マイコプラズマの滑走速度を示す分子速度計(Molecular speedometer indicating gliding speed in Mycoplasma pneumoniae)
    村田 幸樹; 見理 剛; 中根 大介; 柴山 恵吾; 西坂 崇之
    日本細菌学会, Feb. 2018, 日本細菌学雑誌, 73, 1, 82-82, English, 0021-4930, 1882-4110, 2018289037
  • Dynamic Regulation of Bacterial Type IV Pili in Response to Light Signal
    中根大介; 西坂崇之
    2018, 生物物理, 58, 4, 207‐208(J‐STAGE), Japanese, Peer-reviwed, Invited, 1347-4219, 201802259218382666
  • Unitary Steps of Supermolecular Motility Machineries in Gliding Bacteria and Swimming Arcaea
    Yoshiaki Kinosita; Nakane Daisuke; Nariya Uchida; Makoto Miyata; Takayuki Nishizaka
    CELL PRESS, Feb. 2016, BIOPHYSICAL JOURNAL, 110, 3, 198A-198A, English, Summary international conference, 0006-3495, 1542-0086, WOS:000375093800478
  • 細菌毒素研究フロントライン 基礎から臨床まで 臨床分離Enterococcus faecalisが産生する溶菌タンパク質BacL1の特異的ターゲッティング(The frontline studies on bacterial toxins: basic research and clinical application Specific targeting of a plasmid-encoded bacteriolytic protein BacL1 of Enterococcus faecalis)
    久留島 潤; 中根 大介; 野村 隆浩; 西坂 崇之; 富田 治芳
    日本細菌学会, Feb. 2015, 日本細菌学雑誌, 70, 1, 108-108, English, 0021-4930, 2015279420
  • [Mechanism of bacterial gliding motility].
    Daisuke Nakane
    Bacteria have various way to move over solid surfaces, such as glass, agar, and host cell. These movements involve surface appendages including flagella, type IV pili and other "mysterious" nano-machineries. Gliding motility was a term used various surface movements by several mechanisms that have not been well understood in past few decades. However, development of visualization techniques allowed us to make much progress on their dynamics of machineries. It also provided us better understanding how bacteria move over surfaces and why bacteria move in natural environments. In this review, I will introduce recent studies on the gliding motility of Flavobacteium and Mycoplasma based on the detail observation of single cell and its motility machinery with micro-nano scales., 2015, Nihon saikingaku zasshi. Japanese journal of bacteriology, 70, 4, 375-82, Japanese, Peer-reviwed, False, 31595067, 26632217
  • マイコプラズマモービレは70nmの大きさで歩く
    木下 佳昭; 中根 大介; 政池 知子; 水谷 佳奈; 宮田 真人; 西坂 崇之
    マイコプラズマモービレは、ATPを分解し、50nmの大きさのあしタンパク質がシアル酸オリゴ糖に結合・解離を繰り返すことで滑走運動を行う。この1サイクルにおけるあし1本の動きを検出するために、ゴーストを染色し、低濃度ATP、遊離のシアル酸存在下で運動を蛍光顕微鏡で観察した。遊離のシアル酸を添加したことでガラス面に結合しているあしの本数を減らし、70nmの大きさのステップ状の変位を検出した。この大きさは、これまでの運動に寄与するタンパク質の中で最大の大きさである。(著者抄録), 日本マイコプラズマ学会, Mar. 2014, 日本マイコプラズマ学会雑誌, 40, 15-16, Japanese, 1340-2382, 2014254585
  • バクテリア滑走運動の新しいメカニズム ~戦車のような仕組みで動くバクテリア~
    中根大介; 中山浩次; 西坂崇之
    公益社団法人 日本農芸化学会, 2014, 化学と生物, 53, 4, 215-216, Japanese, Peer-reviwed, Invited, 0453-073X, 130005138711
  • Bacterium Moves like a Tank
    Daisuke NAKANE; Koji NAKAYAMA; Takayuki NISHIZAKA
    Biophysical Society of Japan, 2014, Seibutsu Butsuri, 54, 5, 269-270, Peer-reviwed, 31594817
  • Directed binding of Mycoplasma mobile may cause directed displacement in gliding
    TANAKA Akihiro; NAKANE Daisuke; NISHIZAKA Takayuki; MIYATA Makoto
    31 Mar. 2013, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 39, 40-41, Japanese, 1340-2382, 10031161965, AA11179964
  • Leg movements suggested from inhibition of mycoplasma gliding by free sialylated oligosaccharide
    KASAI Taishi; NAKANE Daisuke; ISHIDA Hideharu; ANDO Hiromune; KISO Makoto; MIYATA Makoto
    31 Mar. 2013, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 39, 38-39, Japanese, 1340-2382, 10031161964, AA11179964
  • マイコプラズマモービレの単一滑走装置におけるステップの直接観察(Direct observation of unitary step of gliding machinery in Mycoplasma mobile)
    木下 佳昭; 中根 大介; 政池 知子; 水谷 加奈; 宮田 真人; 西坂 崇之
    日本細菌学会, Feb. 2013, 日本細菌学雑誌, 68, 1, 141-141, English, 0021-4930, 2013249324
  • "Chopped head" of Mycoplasma mobile : isolation of gliding machinery
    NAKANE Daisuke; MIYATA Makoto
    31 Mar. 2012, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 38, 50-50, English, 1340-2382, 10030541593, AA11179964
  • Structure of sialylated oligosaccharide recognized by mycoplasma leg proteins
    KASAI Taishi; NAKANE Daisuke; ISHIDA Hideharu; ANDO Hiromune; KISO Makoto; MIYATA Makoto
    31 Mar. 2011, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 37, 59-60, Japanese, 1340-2382, 10029813489, AA11179964
  • Morphological change and its gliding motility of Mycoplasma mobile induced by treatment of detergent
    NAKANE Daisuke; MIYATA Makoto
    31 Mar. 2011, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 37, 1-2, Japanese, 1340-2382, 10029813353, AA11179964
  • Rapid and flexible analyses of attachment organelle of Mycoplasma pneumoniae by negative-staining electron microscopy
    MATSUO Lisa; NAKANE Daisuke; KENRI Tsuyosi; MIYATA Makoto
    31 Mar. 2011, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 37, 7-8, Japanese, 1340-2382, 10029813365, AA11179964
  • Eighty nm step of Mycoplasma mobile resulting from binding and releasing of sialic acid
    NAKANE Daisuke; NISHIZAKA Takayuki; MIYATA Makoto
    31 Mar. 2010, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 36, 39-40, Japanese, 1340-2382, 10026388752, AA11179964
  • バイオイメージング--画像で迫る脅威の世界 病原細菌,マイコプラズマのユニークな滑走運動を支える細胞骨格
    宮田 真人; 中根 大介
    エヌ・ティー・エス, Mar. 2010, 遺伝, 64, 2, 47-51, Japanese, 0387-0022, 40016983062, AN00015468
  • Gliding motility of Mycoplasma pneumoniae
    宮田 真人; 中根 大介
    金原一郎記念医学医療振興財団, Mar. 2009, 生体の科学, 60, 2, 98-102, Japanese, 0370-9531, 40016638972
  • Isolation and characterization of P1 adhesin, leg protein of gliding motility of M. pneumoniae
    NAKANE Daisuke; ADAN-KUBO Jun; KENRI Tsuyoshi; MIYATA Makoto
    31 May 2008, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 35, 22-23, Japanese, 1340-2382, 10026896187, AA11179964
  • Cytoskeletal structure of M. gallisepticum, deformed from M. pneumoniae
    NAKANE Daisuke; MIYATA Makoto
    31 May 2007, 日本マイコプラズマ学会雑誌 = Japanese Journal of Mycoplasmology, 34, 41-42, Japanese, 1340-2382, 10029813303, AA11179964
  • Mycoplasma pneumoniae 滑走の足, P1 adhesin タンパク質の精製と特徴づけ
    中根 大介; アダン 純; 見理 剛; 宮田 真人
    25 Feb. 2007, 日本細菌学雑誌, 62, 1, 93-93, Japanese, 0021-4930, 10019310141, AN00189800

Books and other publications

  • Isolation and visualization of gliding motility machinery in Bacteroidota (Methods in Molecular Biology)
    Shibata S; Nakane D
    Scholarly book, English, Joint work, Springer, Mar. 2023
  • Live cell imaging of gliding motility of Bacteroidetes under high-resolution microscopy (Methods in Molecular Biology)
    Nakane D; Shibata S
    Scholarly book, English, Joint work, Springer, Mar. 2023
  • Swimming motility assays of Spiroplasma (Methods in Molecular Biology)
    Nakane D
    Scholarly book, English, Single work, Springer, Mar. 2023
  • Live cell imaging of the twitching motility of cyanobacteria by high-resolution microscopy (Methods in Molecular Biology)
    Nakane D
    Scholarly book, English, Single work, Springer, Mar. 2023
  • Gliding mechanism of the Mycoplasma pneumoniae subgroup (Mollicutes: Molecular Biology and Pathogenesis)
    Miyata M; Nakane D
    English, Joint work, Horizon Press, 2014
  • Mollicutes: Molecular Biology and Pathogenesis
    Miyata M; Nakane D
    English, Joint work, Gliding mechanism of the Mycoplasma pneumoniae subgroup (Chapter12), Horizon Press, 2014

Lectures, oral presentations, etc.

  • 微生物は極限環境でかしこく行動するのかな?
    中根大介
    Invited oral presentation, 第25回 極限環境生物学会シンポジウム, Invited
    04 Nov. 2024
  • Narrow space triggers flagellar wrapping of Helicobacter pylori
    横濵さらら; 林原絵美子; 島田佳季; 菅哲朗; 見理剛; 中根大介
    第97回 日本細菌学会総会, Peer-reviewed
    Aug. 2024
  • Water flow triggers adhesion of gliding bacteria to solid surfaces
    荒木亘; 上村直輝; 中根大介
    第97回 日本細菌学会総会, Peer-reviewed
    Aug. 2024
  • Bacterial Olympics achieved by microfluidic devices
    島田 佳季; 吉岡 青葉; 上村 直輝; 中根 大介; 菅 哲朗
    第97回 日本細菌学会総会, Peer-reviewed
    Aug. 2024
  • Water flow navigates the long journey of surface-associated bacteria living in hot springs
    Naoki Uemura; Naoya Chiba; Masatada Tamakoshi; Daisuke Nakane
    第97回 日本細菌学会総会, Peer-reviewed
    Aug. 2024
  • Symbiotic bacteria break through narrow passage by flagellar wrapping
    Aoba Yoshioka; Tetsuo Kan; Kazutaka Takeshita; Hirofumi Wada; Yoshitomo Kikuchi; Daisuke Nakane
    第97回 日本細菌学会総会, Peer-reviewed
    Aug. 2024
  • 温泉の水流がナビゲートする表面付着細菌の長旅
    上村直輝; 千葉直哉; 玉腰雅忠; 中根大介
    Oral presentation, 第20回 21世紀大腸菌研究会, Peer-reviewed
    18 Jun. 2024
  • Water flow navigates the long journey of surface-associated bacteria living in hot springs
    Naoki Uemura; Naoya Chiba; Masatada Tamakoshi; Daisuke Nakane
    IUPAB 2024, Peer-reviewed
    Jun. 2024
  • Symbiotic bacteria break through narrow passage by flagellar wrapping
    Aoba Yoshioka; Tetsuo Kan; Kazutaka Takeshita; Hirofumi Wada; Yoshitomo Kikuchi; Daisuke Nakane
    IUPAB 2024, Peer-reviewed
    Jun. 2024
  • 細菌の行動展示
    中根大介
    おかやまバイオアクティブ研究会, Invited
    Jun. 2024
  • Bacterial motility under realistic environmental conditions: A zoo-like approach
    Daisuke Nakane
    Joint Symposium of the Taiwan Biophysical Society and International Network of Protein Engineering Centers, Invited, Peer-reviewed
    May 2024
  • Symbiotic bacteria break through narrow passage by flagellar wrapping
    Aoba Yoshioka; Tetsuo Kan; Yoshitomo Kikuchi; Daisuke Nakane
    日本微生物生態学会 第36回大会, Peer-reviewed
    Nov. 2023
  • Water flow triggers adhesionof gliding bacteria to solid surfaces
    Motomu Araki; Naoki Uemura; Daisuke Nakane
    日本微生物生態学会 第36回大会
    Nov. 2023
  • Unique swimming style of Helicobacter pylori in thin and narrow environments
    Sarara Yokohama; Emiko Rimbara; Aoba Yoshioka; Yoshiki Shimada; Tetsuo Kan; Tsuyoshi Kenri; Daisuke Nakane
    日本微生物生態学会 第36回大会
    Nov. 2023
  • Water flow navigates the long journey of surface-associated bacteria living in hot springs
    Naoki Uemura; Naoya Chiba; Masatada Tamakoshi; Daisuke Nakane
    日本生物物理学会第61回年会, Peer-reviewed
    Nov. 2023
  • Symbiotic bacteria break through narrow passage by flagellar wrapping
    Aoba Yoshioka; Tetsuo Kan; Yoshitomo Kikuchi; Daisuke Nakane
    第61回日本生物物理学会年会, Peer-reviewed
    Nov. 2023
  • 細菌のべん毛巻き付き運動解析のためのマイクロ流路デバイス
    島田佳季; 吉岡青葉; 中根大介; 菅哲朗
    第14回マイクロ・ナノ工学シンポジウム, Peer-reviewed
    Nov. 2023
  • Water flow navigates the long journey of surface-associated bacteria living in hot springs
    Naoki Uemura, Naoya Chiba, Masatada Tamakoshi, Daisuke Nakane
    日本微生物生態学会第36回浜松大会, Peer-reviewed
    Nov. 2023
  • Behavioral exhibition of bacteria
    Daisuke Nakane
    日本生物物理学会第61回年会, Invited
    Nov. 2023
  • Water flow navigates long journey of Thermus thermophilus
    Naoki Uemura; Masatada Tamakoshi; Daisuke Nakane
    Neotechnologies for ThermusQ initiative, Peer-reviewed
    Oct. 2023
  • Thermus thermophilus standing up with type IV pili for rheotaxis
    Naoki Uemura; Naoya Chiba; Masatada Tamakoshi; Daisuke Nakane
    Neotechnologies for ThermusQ initiative
    Oct. 2023
  • Microfluidic channels for analysis of flagellar wrapping motion of bacteria
    Yoshiki Shimada; Aoba Yoshioka; Daisuke Nakane; Tetsuo Kan
    Oral presentation, Micro TAS 2023, Peer-reviewed
    Oct. 2023
  • 細菌の行動展示
    中根大介
    日本進化学会第24回学術集会, Invited
    Sep. 2023
  • 粘性と狭小空間が誘起するピロリ菌のドリル運動
    横濵さらら; 林原恵美子; 島田佳季; 菅哲朗; 見理剛; 中根大介
    第17回細菌学若手コロッセウム
    Aug. 2023
  • 共生細菌はドリル運動で宿主の狭小空間を突破する
    吉岡青葉; 菅哲朗; 菊池義智; 中根大介
    第17回細菌学若手コロッセウム
    Aug. 2023
  • 自然環境中の流れがナビゲートするⅣ型線毛細菌の長旅
    上村直輝; 玉腰雅忠; 中根大介
    Poster presentation, 第17回細菌学若手コロッセウム
    Aug. 2023
  • 島田佳季、吉岡青葉、中根大介、菅哲朗
    細菌のべん毛巻き付き運動解析のためのマイクロ流体デバイス
    Poster presentation, 第17回細菌学若手コロッセウム
    Aug. 2023
  • 細菌の動きを追いかけて20年 ~マニアックすぎる研究の失敗と挑戦~
    中根大介
    第17回細菌学若手コロッセウム, Invited
    Aug. 2023
  • Flow of water navigates the long journey of surface associated bacteria living in hot springs
    Naoki Uemura; Masatada Tamakoshi; Daisuke Nakane
    Poster presentation, Gordon Research conference on Microbial Adhesion and Signal Transduction, Peer-reviewed
    Jul. 2023
  • Symbiotic bacteria break through narrow spaces with flagellar wrapping
    Aoba Yoshioka; Tetsuo Kan; Yoshitomo Kikuchi; Daisuke Nakane
    Poster presentation, Gordon Research conference on Animal-Microbe Symbiosis, Peer-reviewed
    Jun. 2023
  • 細菌のドリル戦車
    中根大介
    日本顕微鏡学会第79回学術講演会, Invited
    Jun. 2023
  • 細菌のドリル戦車
    中根大介
    第96回 日本細菌学会総会, Invited
    16 Mar. 2023
  • Dual motors enable Type-IV-pilus dependent rheotaxis
    上村 直輝; 玉腰 雅忠; 中根 大介
    第96回 日本細菌学会総会
    Mar. 2023
  • Symbiotic bacteria pass through narrow space with flagella wrapping
    吉岡青葉; 菅哲朗; 菊池義智; 中根大介
    第96回 日本細菌学会総会
    Mar. 2023
  • 細菌は自然環境中でどのように動くのか?
    中根大介
    日本微生物生態学会 第35回大会, Invited
    02 Nov. 2022
  • ホソヘリカメムシの共生細菌は 狭小空間をドリル戦車で泳ぐ
    吉岡青葉; 菅哲朗; 菊池義智; 中根大介
    日本微生物生態学会 第35回大会
    Nov. 2022
  • デュアルモーターが Ⅳ型線毛 依存的な 走流性を可能にする
    上村 直輝; 玉腰 雅忠; 中根 大介
    日本微生物生態学会 第35回大会
    Nov. 2022
  • マイコプラズマは流れに逆らって宿主表面を動いている?
    中根大介
    Invited oral presentation, Japanese, 第49回日本マイコプラズマ学会学術集会, Invited, Domestic conference
    29 May 2022
  • 好熱性シアノバクテリアは c-di-GMP 依存的に走光性方向を切り替える
    中根大介; 榎下元; Annegret Wilde; 西坂崇之
    Oral presentation, Japanese, 第95回日本細菌学会総会, Domestic conference
    29 Mar. 2022
  • Mycoplasma gliding against a fluid flow
    Daisuke Nakane; Yoshiki Kabata; Takayuki Nishizaka
    Oral presentation, English, 23th Congress of International Organization of Mycoplasmology, International conference
    01 Nov. 2021
  • 細菌のドリル戦車
    中根大介
    Invited oral presentation, Japanese, 細菌学会 関東支部会, Invited, Domestic conference
    21 Oct. 2021
  • 微生物はからだの中でかしこく行動するのかな?
    中根大介
    Nominated symposium, Japanese, 動物行動学会, Invited, Domestic conference
    23 Sep. 2021
  • 細菌のドリル戦車
    中根大介
    Keynote oral presentation, Japanese, エアロ・アクアバイオメカニズム学会, Invited, Domestic conference
    17 Sep. 2021
  • 動きの可視化から紐解く原核生物の新しい世界
    中根大介
    Keynote oral presentation, Japanese, Archaea研究会, Invited, Domestic conference
    16 Jul. 2021
  • 肺炎マイコプラズマの走流性
    中根大介; 加畑嘉希; 西坂崇之
    Public symposium, Japanese, 第94回 日本細菌学会総会, Domestic conference
    23 Mar. 2021
  • ちょっと変わった微生物の動き
    中根大介
    Invited oral presentation, Japanese, 2020年度 生物流体力学におけるモデリング, Invited, Domestic conference
    17 Dec. 2020
  • 光刺激によるアーキアラ・モーターの回転方向制御
    伊原礼華; 中根大介; 西坂崇之
    日本生体エネルギー研究会第46回討論会
    Dec. 2020
  • 滑走するFlavobacteriaの集団運動は動的回転を伴う予期せぬ渦構造を示す
    中根大介; 西坂崇之
    Public symposium, Japanese, 第93回 日本細菌学会総会, Domestic conference
    20 Feb. 2020
  • Second messengers mediate directional switching of phototaxis in rod-shaped cyanobacteria
    Daisuke Nakane; Gen Enomoto; annegret Wilde; Takayuki Nishizaka
    Oral presentation, English, Gordon Research Conference (STIM), Invited, International conference
    13 Jan. 2020
  • ラン藻はスパイダーマン? 糸の伸縮で動く仕組み
    中根大介; 西坂崇之
    Invited oral presentation, Japanese, 藍藻の分子生物学 2019, Invited, Domestic conference
    30 Nov. 2019
  • シアノバクテリアはスパイダーマン? 糸の伸縮で動く仕組み
    中根大介; 西坂崇之
    日本微生物生態学会 第33回大会
    Sep. 2019
  • シアノバクテリアはスパイダーマン? 糸の伸縮で動く仕組み
    中根大介; 西坂崇之
    Oral presentation, 第13回 細菌学若手コロッセウム
    Sep. 2019
  • Mycoplasma pneumoniae の細胞骨格の全長を定義する分子ものさし
    村田幸樹; 見理剛; 柴山恵吾; 中根大介; 西坂崇之
    日本マイコプラズマ学会 第46回学術集会
    May 2019
  • Mycoplasma pneumoniae の走流性
    加畑嘉希; 中根大介; 西坂崇之
    Oral presentation, 日本マイコプラズマ学会第46回学術集会
    May 2019
  • Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria
    Nakane D; Nishizaka T
    Invited oral presentation, 43rd Indian Biophysical Society Meeting, Invited
    Mar. 2019
  • 小さなバクテリアがもつ分速度計
    中根大介; 村田幸樹; 見理剛; 柴山恵吾; 西坂崇之
    Oral presentation, 2018年度べん毛交流会
    Mar. 2019
  • Molecular speedometer for gliding motility of Mycoplasma pneumoniae
    Nakane D; Murata K; Kenri T; Shibayama K; Nishizaka T
    Poster presentation, Bacterial locomotion and signal transduction XV
    Jan. 2019
  • 小さなバクテリアがもつ分速度計
    中根大介; 村田幸樹; 見理剛; 柴山恵吾; 西坂崇之
    Oral presentation, 日本生体エネルギー研究会第44回討論会
    Dec. 2018
  • Tiny Spider-Man: Bacteria pulling fibers
    Daisuke Nakane; Takayuki Nishizaka
    The 56th Annual Meeting of the Biophysical Society of Japan, Invited
    17 Sep. 2018
  • Collective motion of gliding Flavobacteria exhibits unforeseen vortex lattice and dynamic plate with rotation
    中根大介; 小高祥子; 鈴木香菜; 西坂崇之
    日本生物物理学会 第56回年会
    Sep. 2018
  • Measurement of the torque generated by the archaellar rotary motor in microscopic detail
    岩田誠司; 木下佳昭; 中根大介; 西坂崇之
    Oral presentation, 日本生物物理学会 第56回年会
    Sep. 2018
  • Molecular speedometer for gliding motility of Mycoplasma pneumoniae
    Nakane D; Murata K; Kenri T; Nishizaka T
    Poster presentation, 22th Congress of International Organization for Mycoplasmology
    Jul. 2018
  • Length of cytoskeletal core acts as a speedometer in the gliding motility of Mycoplasma pneumoniae
    Murata K; Nakane D; Kenri T; Shibayama K; Nishizaka T
    Poster presentation, 22th Congress of International Organization for Mycoplasmology
    Jul. 2018
  • Co-existence of two chiral helices produces kink translation in Spiroplasma swimming
    Nakane D; Ito T; Nishizaka T
    Poster presentation, 22th Congress of International Organization for Mycoplasmology
    Jul. 2018
  • ラン藻はスパイダーマン? 糸の伸縮で動く仕組み
    中根 大介; 西坂崇之
    ラン藻ゲノム交流会 2018, Invited
    30 Jun. 2018
  • Molecular speedometer for gliding motility of Mycoplasma pneumoniae
    Daisuke Nakane
    The 8th Meeting of Asian Organization for Mycoplasmology, Invited
    18 May 2018
  • Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria
    Daisuke Nakane; Takayuki Nishizaka
    第91回 日本細菌学会総会, Invited
    29 Mar. 2018
  • Bacterial motility on surfaces
    Daisuke Nakane
    第91回 日本細菌学会総会, Invited
    28 Mar. 2018
  • Type IV pilus dynamics in response to directional light
    Nakane D; Nishizaka T
    Poster presentation, Gordon Research Conferences (Photosensory Receptors and Signal Transduction)
    Mar. 2018
  • 単細胞性のシアノバクテリアは指向性のある光を認識しIV型線毛を非対称に分布させる
    Nakane D; Nishizaka T
    第91回 日本細菌学会総会
    Mar. 2018
  • Direct visualization of T4P dynamics at 70 degree
    Nakane D; Tamakoshi M; Nishizaka T
    Oral presentation, Gordon Research Conferences (Sensory Transduction in Microorganisms)
    Jan. 2018
  • 最小の戦車
    中根 大介
    第7回 日本微生物学連盟フォーラム, Invited
    16 Dec. 2017
  • こいつ…動くぞ! ねじる・ひっぱる・はうバクテリア
    中根 大介
    生命科学系学会合同年次大会 ComBio2017, Invited
    06 Dec. 2017
  • 膜デバイス解剖の技術開発とバクテリア/アーキア運動可視化への応用
    西坂崇之; 岩田誠司; 中根大介
    Oral presentation, 日本生体エネルギー研究会第44回討論会
    Dec. 2017
  • Thermus thermophilusの表面運動とIV型線毛のダイナミクス
    中根大介; 玉腰雅忠; 西坂崇之
    Oral presentation, 第18回 極限環境生物学会
    Nov. 2017
  • Asymmetric distribution of Type IV pili triggered by directional light in unicellular cyanobacteria
    Daisuke Nakane
    The 56th Annual Meeting of the Biophysical Society of Japan, Invited
    19 Sep. 2017
  • How bacteria move without flagella
    Daisuke Nakane
    International Symposium on "Harmonized supramolecular motility machinery and its diversity", Invited
    13 Sep. 2017
  • Direct observation of dynamics in Type IV pili system and archaella motor
    Nishizaka T; Kinosita Y; Nakane D
    19th International Union for Pure and Applied Biophysics Congress
    May 2017
  • 這う バクテリア Move?
    中根 大介
    第90回 日本細菌学会総会, Invited
    19 Mar. 2017
  • 光刺激によりシアノバクテリアのIV型線毛は非対称に伸長する
    中根大介; 西坂崇之
    Oral presentation, 生体エネルギー研究会 第42回討論会
    Dec. 2016
  • Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum
    Kinosita Y; Uchida N; Nakane D; Nishizaka T
    日本生物物理学会 第54回年会
    Dec. 2016
  • バクテリアがもつナノサイズのコンパスの極性を逆転させる
    葛生祥平; 中根大介; 福森義宏; 田岡東; 西坂崇之
    Oral presentation, 第10回細菌学若手コロッセウム
    Aug. 2016
  • Asymmetric distribution of Type IV pili triggered by directional light in unicellular cyanobacteria
    Nakane D; Nishizaka T
    Oral presentation, Bacterial Flagella, Injectisomes & Type III Secretion Systems
    Mar. 2016
  • 部分的な光照射により誘起されるスピロプラズマの遊泳方向の反転
    伊藤竜朗; 中根大介; 西坂崇之
    2015年度べん毛交流会
    Mar. 2016
  • Dynamics of Type IV pili controlled by light direction in unicellular cyanobacteria
    Nakane D; Nishizaka T
    Oral presentation, Gordon Research Conference (Sensory Transduction in Microorganisms)
    Jan. 2016
  • シアノバクテリアIV型線毛のライブイメージング
    中根大介; 西坂崇之
    Oral presentation, 2016年生体運動研究合同班会議
    Jan. 2016
  • シアノバクテリアが光の向きを認識して運動する仕組み
    中根大介; 西坂崇之
    細菌学会関東支部第98回総会, Invited
    Oct. 2015
  • シアノバクテリアが光の向きを認識して運動する仕組み
    中根大介; 西坂崇之
    Oral presentation, 第12回21世紀大腸菌研究会
    Jun. 2015
  • IX型分泌装置を可視化する
    中根大介
    第88回 日本細菌学会総会, Invited, Peer-reviewed
    Mar. 2015
  • バクテリアのちょっと変わった運動の仕組み
    中根大介
    関東プロティスト倶楽部, Invited
    Feb. 2015
  • アーキアのべん毛は回転する
    木下佳昭; 中根大介; 西坂崇之
    2015年生体運動研究合同班会議
    Jan. 2015
  • 原核生物の体の動かし方
    中根大介
    環境微生物系学会合同大会, Invited, Peer-reviewed
    Oct. 2014
  • 左にしか曲がれないバクテリア
    中根大介
    第8回細菌学若手コロッセウム, Invited
    Aug. 2014
  • 戦車のような仕組みで動くバクテリア
    中根大介
    日本農芸化学会2014年度大会, Invited
    Mar. 2014
  • 滑走するバクテリアがつくる巨大渦パターン
    小高祥子; 中根大介; 西坂崇之
    2014年生体運動研究合同班会議
    Jan. 2014
  • Bacterium moves like a tank
    中根大介; 佐藤啓子; 中山浩次; 西坂崇之
    日本生物物理学会 第51回年会, Invited, Peer-reviewed
    Oct. 2013
  • 戦車のような仕組みで動くバクテリア
    中根大介; 佐藤啓子; Mark J McBride; 中山浩次; 西坂崇之
    Oral presentation, 第7回細菌学若手コロッセウム
    Aug. 2013
  • べん毛でもモータータンパク質でもないバクテリアの運動の仕組み
    中根大介
    第3回分子モーター討論会, Invited, Peer-reviewed
    Jul. 2013
  • Helical flow of surface protein required for Flavobacterium gliding motility
    Nakane D; Sato K; Wada H; McBride MJ; Nakayama K
    Oral presentation, Bacterial locomotion and signal transduction XII
    Jan. 2013
  • フラボバクテリアの滑走運動マシナリー
    中根大介
    日本生化学会第85回大会, Invited, Peer-reviewed
    Dec. 2012
  • バクテロイデーテス細菌の滑走運動
    中根大介
    原生動物学会大会45回大会, Invited, Peer-reviewed
    Dec. 2012
  • “Helical loop track” model for Bacteroidetes gliding motility
    Nakane D; Sato K; Wada H; McBride MJ; Nakayama K
    1st International Conference on Porphyromonas gingivalis and Related Bacterial Species, Invited, Peer-reviewed
    Aug. 2012
  • バクテロイデーテスは右には曲がれない!?
    中根大介; 佐藤啓子; Mark J McBride; 中山浩次
    Oral presentation, 2011年度べん毛交流会
    Mar. 2012
  • バクテロイデーテスの滑走運動はプロトン駆動力を用いて菌体表面を動き回る
    中根大介; 佐藤啓子; Mark J McBride; 中山浩次
    第85回 日本細菌学会総会, Invited
    Mar. 2012
  • Gliding machinery of Flavobacterium johnsoniae moves along the cell surface powered by proton motive force
    Nakane D; Sato K; Wada H; McBride MJ; Nakayama K
    Oral presentation, Gordon Research Conferences (Sensory Transduction in Microorganisms)
    Jan. 2012
  • バクテリアがもつ“ベルトコンベア”のような運動装置
    中根大介; 佐藤啓子; Mark J McBride; 中山浩次
    Oral presentation, 2012年生体運動研究合同班会議
    Jan. 2012
  • Chopped head” of Mycoplasma mobile -Isolation of gliding machinery-
    Nakane D; Miyata M
    The 6th Meeting of the Asian Organization for Mycoplasmology, Invited
    May 2011
  • マイコプラズマの“ちぎれた頭” ~滑走装置の単離~
    中根大介; 宮田真人
    Oral presentation, 2011年生体運動合同班会議
    Jan. 2011
  • マイコプラズマの“ちぎれた頭” ~滑走装置の単離~
    中根大介; 宮田真人
    Oral presentation, 生体エネルギー研究会第36回討論会
    Sep. 2010
  • “Chopped head” of Mycoplasma –Isolation of gliding machinery
    中根大介; 宮田真人
    Oral presentation, 日本生物物理学会 第48回年会
    Sep. 2010
  • 界面活性剤によって伸長したマイコプラズマの動きから示唆されるあしの動き
    中根大介; 宮田真人
    Oral presentation, 第4回細菌学若手コロッセウム
    Aug. 2010
  • Analyses of “leg” movements of Mycoplasma mobile from stepwise gliding
    Nakane D; Nishizaka T; Miyata M
    18th Congress of International Organization for Mycoplasmology
    Jul. 2010
  • 界面活性剤の処理によって誘導されるMycoplasma mobileの形態変化と滑走運動
    中根大介; 宮田真人
    Oral presentation, 日本マイコプラズマ学会第37回学術集会
    Jun. 2010
  • シアル酸の結合・解離をくり返すマイコプラズマのあしの動き
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 第83回 日本細菌学会総会
    Mar. 2010
  • マイコプラズマのステップ
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 2010年生体運動研究合同班会議
    Jan. 2010
  • Step detection of gliding bacterium, Mycoplasma mobile
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 日本生物物理学会 第47回年会
    Nov. 2009
  • Mycoplasma mobileはシアル酸の結合・解離によって80 nmずつ前進する
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 第3回細菌学若手コロッセウム
    Oct. 2009
  • Mycoplasma mobileはシアル酸の結合・解離によって80 nmずつ前進する
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 日本マイコプラズマ学会第36回学術集会
    Jun. 2009
  • Tethered Mycoplasma
    Nakane D; Miyata M
    Poster presentation, Bacterial locomotion and signal transduction X
    Jan. 2009
  • マイコプラズマ滑走運動の“あし”の動きを検出
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 2009年生体運動研究合同班会議
    Jan. 2009
  • Mycoplasma mobileのくらげ構造
    中根大介; 宮田真人
    Oral presentation, 第2回 細菌学若手コロッセウム
    Aug. 2008
  • High-resolution quick imaging of cytoskeletal architectures of M. pneumoniae and M. gallisepticum using conventional electron microscopy
    Nakane D; Miyata M
    Oral presentation, 17th Congress of International Organization for Mycoplasmology
    Jul. 2008
  • Cytoskeletal structure of a gliding mycoplasma, Mycoplasma gallisepticum, revealed by negative staining electron microscopy and image averaging
    Nakane D; Miyata M
    Poster presentation, 108th General Meeting of the American Society for Microbiology
    Jun. 2008
  • Mycoplasma pneumoniae 滑走の足,P1アドヘジンタンパク質の精製
    中根大介; アダン純; 見理剛; 宮田真人
    Oral presentation, 日本マイコプラズマ学会第35回学術集会
    May 2008
  • Mycoplasma pneumoniaeの細胞骨格像の平均化と構成タンパク質の特定
    中根大介; 見理剛; 宮田真人
    Oral presentation, 第82回 日本細菌学会総会
    Mar. 2008
  • もうひとつのマイコプラズマの細胞骨格,今度はヒヨコ ヽ( ・e・)ノ
    中根大介; 宮田真人
    Oral presentation, 2008年生体運動研究合同班会議
    Jan. 2008
  • M. penumoniae をデフォルメしたような M. gallisepticum の細胞骨格
    中根大介; 西坂崇之; 宮田真人
    Oral presentation, 日本マイコプラズマ学会第34回学術集会
    May 2007
  • Jellyfish structure of gliding bacterium, Mycoplasma mobile
    Nakane D; Miyata M
    Oral presentation, Bacterial locomotion and signal transduction (BLAST) IX
    Jan. 2007
  • マイコプラズマの細胞骨格はくらげ構造か?
    中根大介; 宮田真人
    Oral presentation, 2007年生体運動研究合同班会議
    Jan. 2007
  • Isolation and characterization of P1 adhesin involved in gliding motility of Mycoplasma pneumoniae
    Nakane D; Adan-Kubo J; Kenri T; Miyata M
    Oral presentation, 16th Congress of International Organization of Mycoplasmology
    Jul. 2006

Courses

  • Special Lecture in Life Science 2
    Apr. 2024 - Present
    Rikkyo University
  • Biophysics
    Oct. 2023 - Present
    Ochanomizu University
  • 化学生命工学演習第二
    Apr. 2022 - Present
    The University of Electro-Communications
  • システム生物学
    Apr. 2022 - Present
    電気通信大学
  • 化学生命工学実験第一
    Apr. 2021 - Present
    電気通信大学
  • 生物物理学2
    Apr. 2013 - Present
    学習院大学
  • Internship (overseas)
    Apr. 2024 - Mar. 2025
    The University of Electro-Communications
  • Internship
    Apr. 2024 - Mar. 2025
    The University of Electro-Communications
  • 物理実験1
    Apr. 2013 - Sep. 2021
    学習院大学
  • 特別講義
    May 2021 - May 2021
    宇部工業高等専門学校
  • 分子細胞生物学特講3
    Aug. 2020 - Aug. 2020
    千葉大学
  • 化学生命工学演習第二
    電気通信大学
  • システム生物学
    The University of Electro-Communications
  • 化学生命工学実験第二
    The University of Electro-Communications
  • 化学生命工学実験第二
    電気通信大学
  • 化学生命工学実験第一
    The University of Electro-Communications

Affiliated academic society

  • Jan. 2018 - Present
    American Society for Microbiology
  • Jan. 2013 - Present
    THE JAPANESE SOCIETY OF MICROBIAL ECOLOGY
  • Jan. 2006 - Present
    THE BIOPHYSICAL SOCIETY OF JAPAN
  • Jan. 2006 - Present
    JAPANESE SOCIETY FOR BACTERIOLOGY

Research Themes

  • In vivoドリル戦車の可視化と動態計測
    中根大介
    01 Jun. 2022 - 31 Mar. 2025
  • 微生物が動く意味~レーウェンフックを超えた微生物行動学の創生~
    菊池義智
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Transformative Research Areas (B), National Institute of Advanced Industrial Science and Technology, Grant-in-Aid for Transformative Research Areas (B), 22H05065
    01 Jun. 2022 - 31 Mar. 2025
  • 微生物が動く意味~レーウェンフックを超えた微生物行動学の創生~
    中根 大介
    Transformative Research Areas(B), 22H05066
    May 2022 - Mar. 2025
  • 細菌オリンピックによる感染・共生機構の解明
    精密測定技術振興財団, 調査・研究助成, Principal investigator
    Jan. 2024 - Dec. 2024
  • Cell motility of pathogenic bacteria manipulated by a fluid flow
    中根 大介
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), Principal investigator, ヒト肺炎の病原菌である Mycoplasma pneumoniae は,気管上皮細胞の表面に付着し,付着したまま滑るように動くことができる。この接着と滑走運動は,マイコプラズマの病原性発揮に必須の能力であると考えられている。これまでの研究から,この運動装置の構成タンパク質やその構造といった分子メカニズムは徐々に明らかとなっている。しかし,何のためにマイコプラズマは動いているのか,宿主細胞表面上における寄生性細菌の生存戦略という視点の研究は十分ではなく,本菌の病原性・感染過程は十分に理解できていなかった。本研究では,微小デバイスを構築し,その中で精密に制御した水流をかけると,それまでランダムであったマイコプラズマの運動方向が,流れに逆らうように方向を変化させることを光学顕微鏡下で観察することに成功した。非対称な形状をもつ菌体が水流の流れを受けてると、運動装置のある膜突起部位は固体表面に付着したままとなり、菌体の長軸が流れの方向と平行になるように配置が変化した。これは、菌体の形態が風見鶏のように流れの方向を認識するアンテナとして機能することを示唆している。このとき、菌体が発生する力は 150 pN ほどであると見積もられた。これは宿主の気管上皮繊毛が発生する力よりも大きい。もし、肺炎マイコプラズマが粘液繊毛輸送の流れに逆らって宿主表面上を動くのであれば、気管から肺の奥の方へと移動することができる。走流性という特徴的な応答機構は、マイコプラズマの運動の宿主環境下での重要な役割を検討するための新しい枠組みを提供するものである。, 21K07020
    01 Apr. 2021 - 31 Mar. 2024
  • 宿主感染過程における細菌ドリル戦車運動のメカニクス
    中根大介
    野口研究所, 野口遵研究助成金
    01 Apr. 2021 - 31 Mar. 2022
  • Information processing of light at single bacterial cell
    中根 大介
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Principal investigator, 細菌という小さな生命体であっても高度な情報理機構をもつことが知られている。本研究では「走光性」という現象に注目する。走光性システムをもつ細菌に光を照射すると、光に向かって動くことが知られている。ここには「光の向きを認識する」という過程が含まれている。細菌には「眼点」は存在しない。では、なぜ彼らはこのような高度な情報処理ができるのだろうか?ここで我々は光の照射を制御した際に細菌1個体がどのように動き回るのか、特殊な光学顕微鏡下で詳細な観察を行った。 光合成細菌である藍藻は「光」という刺激に対して、好きまたは嫌いという2つの真逆の応答を示す。この “好き嫌い” の切り替えがどのように起きるのかはこれまで不明であった。サーモシネココッカスという好熱性藍藻の場合、“光が好き” だという応答は緑色光によって誘起され、藍藻は光に向かって運動した。一方、“光が嫌い” だという応答は、緑色光+青色光で誘起され、光から離れるように運動をした。この真逆の意思決定は1分程度の光刺激によって可逆的に操作可能であった。一連の意思決定には、c-di-GMP という低分子の細胞内濃度に依存することも見出した。緑色光を検出すると c-di-GMP が分解されて細胞内濃度が低くなったたが、青色光を検出すると c-di-GMP が合成されて濃度が高くなった。この情報伝達物質の濃度変化によって、藍藻は心変わりを引き起こすことを明らかにした。藍藻の心変わりは環境応答という視点でも重要である。日々刻々と移り変わる自然環境にすぐさま応答することで、自身に最適な光環境へと移動できるのだと考えられる。, 20H05543
    01 Apr. 2020 - 31 Mar. 2022
  • 肺炎マイコプラズマがもつ分子速度計と病原性
    内藤記念科学振興財団, 次世代育成支援研究助成金
    01 Apr. 2018 - 31 Mar. 2021
  • バクテリアの “ドリル戦車” 遊泳運動の高精度計測
    中根大介
    精密測定技術振興財団, 調査・研究助成
    01 Apr. 2019 - 31 Mar. 2020
  • 小さなバクテリアがもつ分子速度計
    中根大介
    加藤記念バイオサイエンス振興財団, 研究助成 (優秀賞)
    01 Apr. 2018 - 31 Mar. 2020
  • 視覚を備えたバクテリア
    中根大介
    光科学技術研究振興財団, 研究助成
    01 Apr. 2018 - 31 Mar. 2020
  • 世界最小のスパイダーマンを可視化する
    中島記念国際交流財団, 日本人若手研究者助成金
    01 Apr. 2018 - 31 Mar. 2019
  • バクテリアの集団運動によって生じる巨大渦パターン
    中根大介
    長瀬科学技術振興財団, 研究助成
    01 Apr. 2018 - 31 Mar. 2019
  • T4P dynamics in response to mechanosensing system
    Nakane Daisuke; Nishizaka Takayuki
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (A), Gakushuin University, Grant-in-Aid for Young Scientists (A), Principal investigator, Type IV pili (T4P) are cell-surface appendages observed in prokaryotes that perform critical functions in cell motility, surface adhesion, virulence, and biofilm formation. Although the architecture of T4P has already been determined, the dynamics resulting from the response to various environmental signals remain unclear. Here we demonstrated the sequential process of T4P dynamics from stimulus to taxis at the single-cell level in a model cyanobacterium, which can recognize light direction. We directly visualized that T4P filaments dominantly appeared from the side of the cell opposite the illumination. This asymmetric activation is regulated on a timescale of minutes, and the process was transitioned between three sequential phases. These findings provide clues toward a general regulation mechanism of the T4P system., 16H06230
    Apr. 2016 - Mar. 2019
  • Dynamic bacterial cytoskeleton in Spiroplasma
    Wada Hirofumi; MIYATA Makoto; NAKANE Daisuke
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B), Ritsumeikan University, Grant-in-Aid for Scientific Research (B), We have revealed some new aspects on the mechanics of unique swimming motility of bacterium Spiroplasma. In particular, we have constructed the minimal mechanistic model that may explain helical morphologies of Spiroplasma based on the structural biological data on the ribbon-like cytoskeleton. We have also determined the elastic rigidities of Spiroplasma cell by combining theoretical and numerical analysis with the data from the micromanipulation experiments. In addition to these, we have studied fundamental geometric mechanical properties of macro-scale elastic ribbons by combining theory and experiment, and discussed our new findings in relation to cellular mechanics of bacteria. To summarize, our achievement during the period of this project will significantly contribute to the understanding of yet mysterious mechanism of Spiroplasma swimming dynamics., 15H03712
    01 Apr. 2015 - 31 Mar. 2018
  • 肺炎マイコプラズマが宿主表面で歩くメカニズムの解明
    中根大介
    上原記念生命科学財団, 研究奨励金
    01 Apr. 2015 - 31 Mar. 2017
  • 1 µmの球体の微生物が高速遊泳運動を行う仕組み
    中根大介
    日揮・実吉奨学会, 研究助成金
    01 Apr. 2015 - 31 Mar. 2017
  • べん毛を持たずに高速遊泳運動をするバクテリア
    中根 大介
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Gakushuin University, Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area), Principal investigator, 本研究では,一部のシアノバクテリアで見られるべん毛非依存型の遊泳運動について研究を展開させた。べん毛を使わない遊泳運動は,その現象自体が他に類をみないほどユニークな現象と言える.バクテリアの生体運動の中で,べん毛に依らず,らせん形状をとらずに遊泳運動をするものは,シネココッカス以外に見つかっていない.当該年度は,この研究については,一定の成果は得られたものの,現時点では論文というかたちにまとめるだけの成果は出せていない。一方,計画班・公募班との共同研究が大きく進展した。これは,本領域の目的の1つである新たな生体運動の研究分野の開拓という点で,貢献ができたのではないかと考えている。 1.磁気ピンセットを用いて,磁性細菌の磁極を人為的に反転させることに成功した。2.シネコシスティスがもつIV型線毛の光シグナルによる制御機構を明らかにした。3.スピロプラズマのべん毛非依存的な遊泳について,らせん反転と,それに伴うキンク伝搬の仕組みを明らかにした。4.好熱菌のIV型線毛依存的な運動を最適化し、その動態を画像化した。5.肺炎マイコプラズマの運動装置におけるナノレベルの変位を光学顕微鏡下で検出する方法を確立した。6.バクテロイデス門細菌が集団で滑走運動をするときに,巨大な渦構造を形成することを明らかにした。, 15H01329
    01 Apr. 2015 - 31 Mar. 2017
  • 第3の生体運動,戦車のように動くバクテリアの運動メカニズム
    中根大介
    発酵研究所, 一般研究助成
    01 Apr. 2014 - 31 Mar. 2016
  • 先端計測技術と病原細菌学の融合によって展開するシャクトリムシのように動くバクテリアの運動メカニズム
    中根大介
    旭硝子財団, 研究奨励
    01 Apr. 2014 - 31 Mar. 2016
  • バクテロイデス細菌がもつIX型分泌装置の3次元ダイナミクス
    中根大介
    内藤記念科学振興財団, 奨励金・研究助成
    01 Apr. 2014 - 31 Mar. 2015
  • 3D dynamic imaging of gliding-srcretion apparatus in Bacteroidetes
    NAKANE Daisuke
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, Gakushuin University, Grant-in-Aid for Research Activity Start-up, Principal investigator, Cells of Flavobacterium johnsoniae crawl rapidly over surfaces in a process called gliding motility. These cells do not have flagella or pili but instead rely on a novel motility machine composed of proteins that are unique to the phylum Bacteroidetes. The motility adhesins SprB and RemA are propelled along helical paths on the cell surface by the still poorly-defined gliding motor. Interaction of these adhesins with a surface results in rotation and translocation of the cell. SprB and RemA are delivered to the cell surface by the type IX secretion system (T9SS). T9SSs are confined to but common in the phylum Bacteroidetes. Transmembrane components of the T9SS may perform roles in both secretion and gliding motility., 25893230
    30 Aug. 2013 - 31 Mar. 2015
  • バクテロイデスがもつ滑走・分泌装置の形状と挙動
    中根 大介
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows, Nagasaki University, Grant-in-Aid for JSPS Fellows, Principal investigator, バクテリアの一大グループであるバクテロイデス属は、独自に発達させた滑走・分泌装置をもっている。これらに関わる遺伝子は、既知のアミノ酸配列と全く相同性がないため、既存の知識は、これらのバクテリアが引き起こす病原性やその治療を理解するのに十分ではない。本研究では、この装置のメカニズムにせまるため、土壌に住み、培養の簡単なFlavobacterium johnsoniaeをつかい、主に電子顕微鏡や光学顕微鏡を用いて、ダイナミクスに焦点を当てた研究を進めた。 F.johnsoniaeはガラスや寒天などの固形物表面にはりつき、張り付いたまま滑るように動く、滑走運動をおこなう。この運動時に接着因子としてはたらく700kDaのタンパク質SprBは、既知のどのようなアミノ酸配列とも相同性を持たない。しかし、部分精製した画分をネガティブ染色法で観察すると、長さ150nm、太さ5nmの繊維状の構造をしていた。さらに興味深いことに、抗体と蛍光色素を用いて標識すると、このタンパク質は、バクテリアの外膜表面を約3μmのピッチのらせんに沿って局在し、2μm/sの速さで動き回っていた。 全反射顕微鏡を用いて、この動きを観察すると、タンパク質は必ず左巻きのらせんに沿って動いており、バクテリアが何らかのレールのような構造物を持つことが示唆された。また、SprBの見かけの速さを測定すると、4μm/sとOμm/sの2つのピークをとり、同一のタンパク質が固形物表面との接着力をダイナミックに変化させていることが示唆された。これらの知見は、このバクテリアの複雑な運動様式、例えば前進・後退・反転・回転をうまく説明できる。つまり、接着力の強いSprBのほとんどがバクテリアの末端に向かって動くと、菌体は前進するが、一方、接着力の強いSprBが平行に並んで逆向きに動くとすると、トルクが生まれて、菌体は回転や反転などの挙動を示す。, 11J01792
    2011 - 2012
  • マイコプラズマ滑走運動のメカニズム
    中根 大介
    Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research Grant-in-Aid for JSPS Fellows, Osaka City University, Grant-in-Aid for JSPS Fellows, 私の所属する研究室では,「マイコプラズマ滑走運動のメカニズム」について研究を行っている.本年度は,最も速く滑走運動を行うMycoplasma mobile,ヒトの病原菌Mycoplasma pneumoniaeを用いて,以下のことを明らかにした. (1)M.mobileを界面活性剤Tween 60の処理により菌体形状の変化を誘導し,菌体長が0.8μmから2.0μmに伸長することを示した.この,のびた菌体の滑走運動を解析し,同じ線上に並んでいる"あし"が必ずしも協同的には動いていないことが示唆された. (2)M.mobileの滑走装置を、膜に埋め込まれたままの状態で単離した.この画分にATPを加えると,バラバラになった菌体の破片が,ガラス表面上で運動した.これを用いて,ATPと結合・滑走の関係を明らかにし,滑走運動の作業仮説を新しくした. (3)M.pneumoniaeの滑走運動をになう細胞骨格構造を調べるために,菌体を界面活性剤で処理し,とけ残った構造を電子顕微鏡で観察した.ネガティブ染色法の改良と画像の平均化により,高解像度な細胞骨格像を以前よりも簡単に得ることができた.さらに,すでにあるYFP融合株を利用して,細胞骨格構成タンパク質を網羅的に特定した. (4)M.pneumoniaeは,菌体表面の"あし"を用いて,滑走運動をおこなう.本研究では,170kDaのあしのタンパク質P1 adhesinの精製をおこなった.そして,部分分解とアミノ酸配列の比較により3つのドメインに分かれること,電子顕微鏡観察により丸い分子形状を持つことを示し,タンパク質の分子モデルを提案した.このタンパク質は,シアル酸との結合能を持つ可能性があり,また抗原性変化のタンパク質としても知られており,マイコプラズマ肺炎の病原性の理解につながることが期待される., 08J10913
    2008 - 2010

Social Contribution Activities

  • 都立 調布北高校生の研究指導
    Advisor, 電気通信大学 調布北高校
    Apr. 2024 - Mar. 2025
  • 夢ナビライブ2024 研究室訪問
    Appearance, 夢ナビ, 微生物のオリンピックを開催しよう, Science cafe
    20 Oct. 2024
  • 大学出張講義(出前授業)
    Lecturer, 都立小松川高等学校, スマホで微生物をみてみよう, Visiting lecture
    10 Oct. 2024
  • 微生物を視る 夏の学校を開催
    Appearance, 科研費 学術変革領域 (B) 微生物が動く意味, Research advise
    20 Sep. 2024
  • 匠ガールプロジェクト 夏休みは電通大でラボ体験
    Appearance, 電気通信大学, スマホで微生物をみてみよう, Science cafe
    22 Aug. 2024
  • 夢ナビでのビデオ講演
    Lecturer, 夢ナビ, 微生物のオリンピックを開催しよう, Visiting lecture
    09 Aug. 2024
  • オープンキャンパス 研究室公開および講演
    Appearance, 電気通信大学, Open college
    14 Jul. 2024
  • 匠ガールプロジェクト 夏休みは電通大でラボ体験
    Appearance, 電気通信大学, スマホで微生物をみてみよう, Science cafe
    13 Jul. 2024
  • オープンラボ 研究室公開
    Organizing member, 電気通信大学, Open college
    19 May 2024
  • 匠ガールプロジェクト 冬休みは電通大でラボ体験
    Appearance, 電気通信大学, スマホで微生物をみてみよう, Science cafe
    27 Dec. 2023
  • 微生物を視る 夏の学校を開催
    Appearance, 科研費 学術変革領域 (B) 微生物が動く意味
    Aug. 2023
  • 大学出張講義(出前授業)
    Appearance, 電気通信大学, スマホで微生物をみてみよう, 静岡理工科大学 星陵中学校・高等学校, Visiting lecture
    21 Jun. 2023
  • 電気通信大学 オープンキャンパス
    Appearance, 電気通信大学, スマホで微生物を見てみよう
    17 Jul. 2022
  • サイエンスカフェ Chofu
    Appearance, 電気通信大学・調布市, こいつ…動くぞ! スマホで微生物を見てみよう, 小学生
    13 Nov. 2021
  • 大学出張講義(出前授業)
    Appearance, 電気通信大学, スマホで微生物を見てみよう, 都立立川国際中等教育学校
    29 Oct. 2021

Academic Contribution Activities

  • アドミッションセンター会議 構成員
    Planning etc, 電気通信大学, Apr. 2024 - Present
  • 環境安全衛生管理センター専門部門 部門員
    Planning etc, 電気通信大学, 01 Oct. 2023 - Present
  • 研究用微生物等安全管理委員会 委員
    Planning etc, 電気通信大学, Jan. 2023 - Mar. 2025
  • 科研費 学術変革B JST ACT-X 合同シンポジウム
    Competition etc, Planning etc, 科研費 学術変革B JST ACT-X, 13 Nov. 2024, 電気通信大学
  • Bacteriology meets micro-nano engineering
    Competition etc, Panel chair etc, 微生物生態学会第37回大会, 28 Oct. 2024
  • Beyond Borders: Insights into International Employment Opportunities
    Panel chair etc, The Biophysical Society of Japan, 28 Jun. 2024
  • Bacterial/Archaeal Supermolecular Assembly
    Competition etc, Panel chair etc, IUPAB 2024 Kyoto, 27 Jun. 2024, True
  • Exploring, Observing, and Appreciating Microbial Motility
    Competition etc, Panel chair etc, 日本微生物生態学会第36回大会, 28 Nov. 2023
  • キャリア支援説明会
    Competition etc, Panel chair etc, 日本生物物理学会, 14 Nov. 2023
  • Taiwan-Japan Bilateral Symposium
    Competition etc, Panel chair etc, The 61st Annual Meeting of the Biophysical Society of Japan, 14 Nov. 2023
  • 感染・共生を突き進む細菌のドリル戦車
    Competition etc, Panel chair etc, 第96回日本細菌学会総会, 16 Mar. 2023
  • The dawn of behavioral microbiology
    Competition etc, Panel chair etc, 日本微生物生態学会第35回大会, 02 Nov. 2022