
YUICHI YAMADA
Division of General Education(Graduate School of Informatics and Engineering) | Professor |
Division of General Education(School of Informatics and Engineering ) | Professor |
Department of Informatics | Professor |
Cluster I (Informatics and Computer Engineering) | Professor |
- Profile:
Research in Topology of low-dimensional manifolds.
Dehn surgery, framed links, knotted surfaces.
Recently, research on exceptional Dehn surgery
from the view point of singularity.
Researcher Information
Degree
Career
Educational Background
Research Activity Information
Paper
- Divide knot presentation of sporadic knots of Berge's lens space surgery
Yuichi YAMADA
Kyungpook Math. J., 2020, 60(2), 255-277, Jun. 2020, Peer-reviwed
Scientific journal, English - Exceptional Dehn surgeries along the Mazur link
Yuichi Yamada
J. Gökova Geom. Topol. GGT, 12, 40-70, 2018, Peer-reviwed
Scientific journal, English - Four-dimensional manifolds constructed by lens space surgeries of distinct types
Motoo Tange; Yuichi Yamada
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 26, 11, 1750069-1-51, Oct. 2017, Peer-reviwed
Scientific journal, English - LENS SPACE SURGERIES ALONG CERTAIN 2-COMPONENT LINKS RELATED WITH PARK'S RATIONAL BLOW DOWN, AND REIDEMEISTER-TURAEV TORSION
Teruhisa Kadokami; Yuichi Yamada
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 96, 1, 78-126, Feb. 2014, Peer-reviwed
Scientific journal, English - Four-dimensional manifolds constructed by lens space surgeries along torus knots
Motoo Tange; Yuichi Yamada
J. of Knot Theory and its Ramifications, 21, 11, 12501-1--65, Aug. 2012, Peer-reviwed
Scientific journal, English - A note on essential tori in the exterior of torus knots with twists
Kanji MORIMOTO; Yuichi YAMADA
Kobe J of Math., 26, 1-2, 29-34, Dec. 2009, Peer-reviwed
Scientific journal, English - Lens space surgeries as A'Campo's divide knots
Yuichi Yamada
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 9, 1, 397-428, 2009, Peer-reviwed
Scientific journal, English - A deformation of the Alexander polynomials of knots yielding lens spaces
Teruhisa Kadokami; Yuichi Yamada
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 75, 1, 75-89, Feb. 2007, Peer-reviwed
Scientific journal, English - Two equalities on the Alexander polynomial of the pretzel knot of type (-2,3,7)
Yuichi YAMADA
Bulletin of the University of Electro-Communications, 18, 1・2, 47-52, 2006, Peer-reviwed
Research institution, English - Reidemeister Torsion and Lens surgeries on (-2,m,n)-Pretzel knots
Teruhisa KADOKAMI; Yuichi YAMADA
KOBE Journal of Mathematics, Kobe University, 23, 1-2, 65-78, 2006, Peer-reviwed
Scientific journal, English - Finite Dehn surgery along A'Campo's divide knots
Yuichi YAMADA
43, 573-583, 2006
International conference proceedings, English - Lens space surgeries and plane curves
山田裕一
研究集会「結び目のトポロジーVIII」報告集, 51-64, 2006
Research society, Japanese - Berge's knots in the fiber surfaces of genus one, lens space and framed links
Y Yamada
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 14, 2, 177-188, Mar. 2005, Peer-reviwed
Scientific journal, English - A family of knots yielding graph manifolds by Dehn surgery
Y Yamada
MICHIGAN MATHEMATICAL JOURNAL, 53, 3, 683-690, 2005, Peer-reviwed
Scientific journal, English - Some graph surgeries along A'Campo's divide knots
Yuichi YAMADA
東京都立大学 特異点セミナー, Nov. 2004
Japanese - Reidemeister torsion and lens surgeries on (-2, m, n)-pretzel knots
山田裕一; 門上晃久
日大セミナー, Jun. 2004
Japanese - レンズ空間を生み出すある結び目族 と 環状のFramed Link
山田裕一
早大理工トポロジーセミナー, Jul. 2003
Japanese - レンズ空間を生み出すある結び目族と平面曲線
山田裕一
埼玉大学木曜セミナー, Apr. 2003
Japanese - A family of two-component links of real projective planes in the four-sphere
Y Yamada
TOPOLOGY AND ITS APPLICATIONS, 127, 3, 313-323, Jan. 2003, Peer-reviwed
Scientific journal, English - 球面的3次元多様体から構成した4次元可微分多様体(講演)
山田裕一
京都大学理学部数学教室 微分トポロジーセミナー, Dec. 2002
Japanese - Iterated torus knots and positive definite 4-maniflds
東工大トポロジーセミナー, May 2002
English - Lissajous Curves as A’Campo Divides, Torus Knots and Their Fiber Surfaces
Hiroshi Goda; Mikami Hirasawa; Yuichi Yamada
Tokyo Journal of Mathematics, 25, 2, 485-491, 2002
Scientific journal, English - Lissajous Curves as A’Campo Divides, Torus Knots and Their Fiber Surfaces
Hiroshi Goda; Mikami Hirasawa; Yuichi Yamada
Tokyo Journal of Mathematics, 25, 2, 485-491, 2002, Peer-reviwed
Scientific journal, English - ある射影平面の2成分絡み目の族と手術
山田裕一
KOOKセミナー(関西結び目理論研究会), Jun. 2001
Japanese - Gluck surgery and framed links in 4-manifolds
K. Habiro; Y.Marumoto; Y.Yamada
Knots in Hellas '98 Proceedings of the International Conference on Knot Theory and Its Ramifications,(C. McA. Gordon et al. ed.),World Scientific, 80-93, 2000, Peer-reviwed
International conference proceedings, English - On the geometric intersection number of an immersed manifold and a plane
Y Yamada
OSAKA JOURNAL OF MATHEMATICS, 36, 3, 673-683, Sep. 1999, Peer-reviwed
Scientific journal, English - Gluck surgery along a 2-sphere in a 4-manifold is realized by surgery along a projective plane
A Katanaga; O Saeki; M Teragaito; Y Yamada
MICHIGAN MATHEMATICAL JOURNAL, 46, 3, 555-571, 1999, Peer-reviwed
Scientific journal, English - 「4次元多様体の手術」
山田裕一
埼玉大学理学部数学教室談話会, Nov. 1998
Japanese - Gluck surgeries and gluing RP^2-Knot exteriors
YAMADA Yuichi
Knots in Hellas '98, Delphi, Greece, Aug. 1998
English - Decomposition of S4 as a twisted double of a certain manifold
Yuichi Yamada
Tokyo Journal of Mathematics, 20, 1, 23-33, 1997, Peer-reviwed
Scientific journal, English - Decomposition of the four sphere as a union of RP^2-Knot exteriors
Yuichi YAMADA
Proceedings of Applied Mathematics Work shop 8. The fifth Korea-Japan School of Knots and Links, 345-351, 1997
International conference proceedings, English - E^N にはめ込まれた多様体と平面との幾何的交点数
山田裕一
数理解析研究所講究録「実特異点のトポロジーとその関連話題」, 京都大学, 952, 189-200, 1997
Research institution, Japanese - Some Seifert 3-manifolds which decompose S^4 as a twisted double
Yuichi YAMADA
Knots 96, Proceedings, 545-550, 1997
International conference proceedings, English - AN EXTENSION OF WHITNEYS CONGRUENCE
Y YAMADA
OSAKA JOURNAL OF MATHEMATICS, 32, 1, 185-192, Mar. 1995, Peer-reviwed
Scientific journal, English
MISC
- Kirby Calc. 入門
山田裕一
Sep. 2007, 研究集会「低次元幾何学 と 無限次元幾何学」, 80分, Japanese, Introduction other - 多様体の中で具体的にキャッソンハンドルを"作る" (Z.Bizaca と R.Gompf の結果紹介)
山田裕一
May 2007, キャッソンハンドル勉強会, 80分, Japanese, Introduction other - Lens space surgeries and plane curves
山田裕一
Jan. 2006, 京都大(上正明先生セミナー)1日間, *, Japanese, Introduction other - Some Dehn surgeries along A'Campo's divide knots
山田裕一
Oct. 2004, 阪大(作間誠先生セミナー)1日間, Japanese, Introduction other - 「Kirby Calculus と4次元多様体の構成・切貼り」 「Loi-Piergallini 論文周辺の話」(連続講演)
山田裕一
Oct. 2001, 京都大学数理解析研究所 短期共同研究 「低次元トポロジーと接触幾何」, Japanese, Introduction other
Books and other publications
Lectures, oral presentations, etc.
- L-space embedding in negative definite closed 4-manifold constructed by a pair of Dehn surgeries along knots
Motoo TANGE; Yuichi YAMADA
Oral presentation, 日本数学会 年会(早稲田大学)
Mar. 2025
Mar. 2025 Mar. 2025 - Seifert manifolds that have two Dehn surgery descriptions along torus knots
Yuichi YAMADA; Motoo TANGE
Oral presentation, 日本数学会 年会(早稲田大学)
Mar. 2025
Mar. 2025 - Seifert manifolds that have two (integral/rational) Dehn surgery descriptions along torus knot
Yuichi YAMADA (joint work with Motoo TANGE)
Oral presentation, English, The 20th East Asian Conference on Geometric Topology
04 Feb. 2025
04 Feb. 2025- 07 Feb. 2025 - Divide link に沿う例外的デーン手術と4次元多様体
山田裕一
Oral presentation, 研究集会「多様体のトポロジーの進展」
10 Nov. 2024
09 Nov. 2024- 10 Nov. 2024 - Exceptional Dehn surgeries along a certain family of two component links
Yuichi YAMADA
Oral presentation, 日本数学会 秋季総合分科会(大阪大学)
06 Sep. 2024
Sep. 2024 Sep. 2024 - Divide knot presentation of Type 8 knots in Berge’s lens space surgery
Yuichi YAMADA
Oral presentation, English, The 17th East Asian Conference of Geometric Topology, International conference
18 Jan. 2022 - Difficulty on divide knot presentation of Type 8 knots in Berge's lens space surgery
山田 裕一
Oral presentation, Japanese, 研究集会「4次元トポロジー」, 大阪大学(Online), Domestic conference
14 Nov. 2021 - Instantons and Four-Manifolds 4章 CP2の錐
山田 裕一
Oral presentation, Japanese, 研究集会「微分トポロジー21〜インスタントンゲージ理論スクール〜」, Domestic conference
21 Feb. 2021 - 4-dimensional light bulb theorem by Gabai II
Yuichi YAMADA
Oral presentation, English, Differential Topology 19, Knotted surfaces in 4-manifolds and their surgeries, Invited, 安部哲哉(立命館大学), 丹下基生(筑波大学), 立教大学(東京キャンパス), Domestic conference
11 Mar. 2019 - Exceptional Dehn surgeries along certain two-component links related to 4-manifolds
Yuichi YAMADA
Oral presentation, English, Four Dimensional Topology, Invited, Osaka City University, We study Dehn surgeries along some two component links related to the theory of 4-manifolds, and make a complete list of exceptional, i.e., non-hyperbolic integral Dehn surgeries along them. We are interested in the distribution of lens space, Seifert and graph manifold surgeries. We use Martelli-Petronio-Roukema's theorem on exceptional Dehn surgeries along the minimally twisted four chain link., International conference
06 Sep. 2018 - Exceptional Dehn surgeries along the Mazur link
山田裕一
Oral presentation, Japanese, 日本数学会 秋季総合分科会(山形大学), 山形大学, 2016年1月" The 11th East Asian School of Knots and Related Topics"招待講演の内容から Mazur link の部分を短く講演., Domestic conference
11 Sep. 2017 - Change maker とトーラス結び目のレンズ空間手術
山田裕一
Oral presentation, Japanese, 研究集会「瀬戸内結び目セミナー」, 堤康嘉(大島商船高専 准教授), 大島商船高専, Change maker(辞書訳:両替商)は J. Greene 氏が レンズ空間手術理論に重要な貢献を果たしたときに導入された概念です.勉強してみたところ、3次元・4次元多様体論の重要な関わりがありました.主に結び目理論への応用に期待して、あえて最も簡単なトーラス結び目の場合を解説します., Domestic conference
03 Sep. 2016 - Dehn surgery along the Mazur link and Akbulut-Yasui links
Yuichi, YAMADA
Invited oral presentation, English, The 11th East Asian School of Knots and Related Topics, Osaka City University, International conference
28 Jan. 2016 - Lens space surgery and Kirby calculus of 4-manifolds
Yuichi YAMADA
Invited oral presentation, Japanese, トポロジー火曜セミナー(東大数理), Invited, 河野俊丈 氏、河澄響矢 氏、逆井卓也 氏, 東京大学大学院 数理科学研究科, http://faculty.ms.u-tokyo.ac.jp/~topology/index.html, The problem asking "Which knot yields a lens space by Dehn surgery" is called "lens space surgery". Berge's list ('90) is believed to be the complete list, but it is still unproved, even after some progress by Heegaard Floer Homology. This problem seems to enter a new aspect: study using 4-manifolds, lens space surgery from lens spaces, checking hyperbolicity by computer.
In the talk, we review the structure of Berge's list and talk on our study on pairs of distinct knots but yield same lens spaces, and 4-manifolds constructed from such pairs. This is joint work with Motoo Tange (Tsukuba University)., Domestic conference
08 Dec. 2015 - Exceptional Dehn surgeries along the Mazur link
Yuichi YAMADA
Invited oral presentation, Japanese, 学習院大学 トポロジーセミナー, Invited, 中村 伊奈沙 氏, 学習院大学, http://www.ms.u-tokyo.ac.jp/~inasa/Japanese/seminar, Domestic conference
04 Dec. 2015 - Exceptional Dehn surgeries along the Mazur link and its generalization
Yuichi YAMADA
Oral presentation, Japanese, 研究集会「4次元トポロジー」, 世話人:鎌田聖一,安井弘一,松本堯生 組織委員:上正明,鎌田聖一,河内明夫,古田幹雄,松本堯生,松本幸夫, 大阪市立大学, http://www.sci.osaka-cu.ac.jp/math/OCAMI/symposium/4top201511.html, The Mazur link is a two component symmetric link which gives the Mazur manifold, contractible but not a 4-ball. The Mazur link has some lens space surgeries and Seifert space surgeries, with integer coefficients. The Akbulut-Yasui links, a generalization of the Mazur manifold as cork (a contractible piece that changes differential structures), have also non-hyperbolic surgeries. We determine non-hyperbolic Dehn surgeries along the links, by Martelli-Petronio-Roukema's results on the minimally twisted five chain link, from the view point of exceptional Dehn surgery., Domestic conference
22 Nov. 2015 - Four dimensional manifolds constructed by lens space surgeries
山田裕一
Oral presentation, Japanese, 日本数学会 秋季総合分科会(京都産業大学), 日本数学会, 京都産業大学, Domestic conference
13 Sep. 2015 - Dehn surgery along on a certain family of two component links
山田裕一
Oral presentation, Japanese, 研究集会「瀬戸内結び目セミナー」, Invited, 堤 康嘉 氏, 大島商船高専, Mazur link などに沿う例外的Dehn手術について考えたことを話します.Mazur link は,可縮で球体ではない4次元多様体を構成する のに使われる2成分絡み目で,4次元多様体の可微分構造を交換する「コルク」の図式としても知られています., Domestic conference
06 Sep. 2015 - Lens spaces obtained by Dehn surgery (Dehn surgery and 4-manifolds)
Yuichi YAMADA
Oral presentation, Japanese, 研究集会「 微分トポロジー15〜微分トポロジーの過去・現在・未来〜」, 山田裕一(電通大)、安部哲哉(東工大)、丹下基生(筑波大), 京都大学 理学部, http://www.math.tsukuba.ac.jp/~tange/diftop15.html, Domestic conference
25 Mar. 2015 - デーン手術と4次元多様体
山田裕一
Oral presentation, Japanese, 微分トポロジー15〜微分トポロジーの過去・現在・未来〜, 京都大学, http://www.math.tsukuba.ac.jp/~tange/diftop15.html, 講演後の加筆:2014年の秋, Mazur link の (4,5)-surgery が lens space であることに気がつきました. そこで, Akubult-Yasui Cork の図式を与える2成分linkにも対象を広げて類似の lens space surgery を探し, いくつかの族を見つけましたので報告します. Reidemeister torsion との密接な関係の下で, 上記の surgery に関わる Alexander 多項式の合同式(円分体での 等式)について得られたことも話しました., Domestic conference
05 Mar. 2015 - Divide link に沿う lens space surgery と4次元多様体
山田裕一
Oral presentation, Japanese, 多様体のトポロジーの展望, Domestic conference
30 Nov. 2014 - レンズ空間手術の組から構成する4次元多様体
山田裕一; 下基生; 氏; との共同研究
Oral presentation, Japanese, 研究集会「4次元トポロジー」, Domestic conference
22 Nov. 2014 - Embeddings of lens spaces in $2\sharp CP^2$ constructed from lens space surgeries
Yuichi YAMADA
Oral presentation, English, Knots and Low Dimensional Manifolds: a Satellite Conference of Seoul ICM 2014, Busan(KOREA), International conference
25 Aug. 2014 - 4-manifolds constructed by lens space surgeries
Motoo Tange; Yuichi Yamada
Oral presentation, Japanese, 研究集会「4次元トポロジー」,研究集会「4次元トポロジー」
Nov. 2012 - Divide knot presentations of sporadic knots of Berge's lens space surgery
Yuichi Yamada
Oral presentation, Japanese, 東北結び目セミナー 2012,東北結び目セミナー 2012
Oct. 2012 - Divide knot presentations of sporadic knots of Berge's lens space surgery
山田裕一
Oral presentation, Japanese, 日本数学会 秋季総合分科会 九州大学,日本数学会 秋季総合分科会 九州大学
Sep. 2012 - 4-manifolds constructed by lens space surgery
丹下基生; 山田裕一
Others, Japanese, 京都大学、上正明先生のセミナー, 京都大学、上正明先生のセミナー
Jan. 2012 - レンズ空間手術 から構成する4次元多様体
丹下基生; 山田裕一
Oral presentation, Japanese, 広島大学 トポロジー・幾何セミナー,広島大学 トポロジー・幾何セミナー
Jul. 2011 - Four dimensional manifolds constructed by lens space surgeries along torus knots
丹下基生; 山田裕一
Oral presentation, Japanese, 日本数学会 年会 早稲田大学(震災のため中止),日本数学会 年会 早稲田大学(震災のため中止)
Mar. 2011 - Divide knot presentation of Berge's knots of lens space surgery
Yuichi YAMADA
Oral presentation, English, Singularities, knots, and mapping class groups in memory of Bernard Perron
Sep. 2010 - Lens space surgeries along certain 2-component links, and Reidemeister-Turaev torsion
Teruhisa KADOKAMI; Yuichi YAMADA
Oral presentation, English, Twisted topological invariants and topology of low-dimensional manifolds,
Sep. 2010 - Lens space surgeries along certain 2-component links and Reidemeister-Turaev torsion
門上晃久; 山田裕一
Oral presentation, Japanese, 日本数学会年会 慶応義塾大学
Mar. 2010 - Every Berge's knot of lens space surgery is a divide knot
Yuichi YAMADA
Invited oral presentation, English, The sixth East Asian School of Knots and Related topics, The sixth East Asian School of Knots and Related topics, Tianjin, China, International conference
Jan. 2010 - 4次元多様体を表す Kirby Diagram:基礎から応用
山田裕一
Oral presentation, Japanese, 筑波大学トポロジーセミナー,筑波大学トポロジーセミナー
Oct. 2009 - フリードマン原論文に学ぶ 6章, 8章
山田裕一
Oral presentation, Japanese, キャッソン・フリードマン理論 研究会,キャッソン・フリードマン理論 研究会
Oct. 2009 - Dehn surgery along A'Campo's divide knots, Lens spaces and plane curves
Yuichi YAMADA
Oral presentation, English, Branched Coverings, Degenerations, and Related Topics
Mar. 2009 - Lens space surgery along A'Campo's divide knots II
Yuichi YAMADA
Oral presentation, English, The 5th East Asian School of Knots and Related Topics
Jan. 2009 - Generalized rational blow-down, torus knots, and Euclidean Algorithm
山田裕一
Oral presentation, Japanese, 日本数学会 秋季総合分科会 東京工業大学
Sep. 2008 - Torus knots, generalized rational blow-down, and lens space surgery of Type 7, 8
Yuichi YAMADA
Oral presentation, English, 研究集会「4次元のトポロジー」
Feb. 2008 - Generalized rational blow-down and Euclidean Algorithm
山田裕一
Oral presentation, Japanese, 研究集会「低次元幾何学 と 無限次元幾何学」
Sep. 2007 - Alexander polynomials of knots represented by L-shaped plane curves
門上晃久; 山田裕一
Oral presentation, Japanese, 研究集会「トポロジーとコンピュータ 2006」,研究集会「トポロジーとコンピュータ 2006」
Nov. 2006 - Berge's lens surgeries as A'Campo's divide knots
山田裕一
Oral presentation, Japanese, 日本数学会 秋季総合分科会 大阪市立大学
Sep. 2006 - Lens surgery, blow-ups and 4-manifolds
Yuichi YAMADA
Oral presentation, Japanese, 広島トポロジー研究集会(3・4次元数学を目指して),広島トポロジー研究集会(3・4次元数学を目指して)
Jan. 2006 - Lens space surgeries and plane curves
Yuichi YAMADA
Oral presentation, Japanese, 結び目のトポロジーVIII,結び目のトポロジーVIII
Dec. 2005 - Berge's typeV lens surgery as A'Campo's divide knots
Yuichi YAMADA
Public symposium, English, The Second East Asian School of Knots and Related Topics in Geometric Topology, The Second East Asian School of Knots and Related Topics in Geometric Topology, 大連
Aug. 2005 - L字型 Divide knots に沿う Dehn surgery と Alexander polynomial
山田裕一
Oral presentation, Japanese, 東京女子大 トポロジーセミナー,東京女子大 トポロジーセミナー
Apr. 2005 - A deformation of the Alexander polynomials of knots yielding lens spaces
山田裕一; 門上晃久
Others, Japanese, 日本数学会年会 日本大学理工学部, 日本数学会年会 日本大学理工学部
Mar. 2005 - A deformation of the Alexander polynomials of knots yielding lens spaces
山田裕一; 門上晃久
Oral presentation, Japanese, 日本数学会年会 日本大学理工学部, 日本数学会年会 日本大学理工学部
Mar. 2005 - L-shaped divide knots, Kirby-Melvin's grapes and Alexander polynomials
Yuichi YAMADA
Oral presentation, Japanese, 東北結び目セミナー in 秋田
Feb. 2005 - L-shaped divide knots, Kirby-Melvin's grapes and Alexander polynomials
Yuichi YAMADA
Oral presentation, Japanese, 東北結び目セミナー in 秋田, 東北結び目セミナー in 秋田
Feb. 2005 - Some Seifert surgeries along A'Campo's divide knots and 4-manifolds
Yuichi YAMADA
Oral presentation, English, Conference:Toward the Future of the Topology of Manifolds
Nov. 2004 - Some Seifert surgeries along A'Campo's divide knots and 4-manifolds
Yuichi YAMADA
Oral presentation, English, Conference:Toward the Future of the Topology of Manifolds, Conference:Toward the Future of the Topology of Manifolds
Nov. 2004 - Some graph surgeries along A'Campo's divide knots
Yuichi YAMADA
Others, Japanese, 東京都立大学 特異点セミナー
Nov. 2004 - 曲線の "面積" と Finite Dehn surgry の係数
山田裕一
Others, Japanese, 日本数学会秋期総合分科会 北海道大学, 日本数学会秋期総合分科会 北海道大学
Sep. 2004 - 曲線の "面積" と Finite Dehn surgry の係数
山田裕一
Oral presentation, Japanese, 日本数学会秋期総合分科会 北海道大学, 日本数学会秋期総合分科会 北海道大学
Sep. 2004 - Reidemeister torsion and lens surgeries on (-2, m, n)-pretzel knots
山田裕一; 門上晃久
Others, Japanese, 日大セミナー
Jun. 2004 - Dehn surgery along A' Campo's divide knots
Yuichi YAMADA
Oral presentation, English, The First East Asian School of Knots, Links and Related Topics
Feb. 2004 - Dehn surgery along A' Campo's divide knots
Yuichi YAMADA
Others, English, The First East Asian School of Knots, Links and Related Topics
Feb. 2004 - 格子から切り取った平面曲線 と Dehn 手術の係数
山田裕一
Oral presentation, Japanese, 数理解析研究所 短期共同研究「特異点における新しい方法と対象」
Nov. 2003 - Plane curves as A'Campo's divides and Dehn surgery
Yuichi YAMADA
Oral presentation, English, Singularity Theory and Its Applications
Sep. 2003 - レンズ空間を生み出すある結び目族 と 環状のFramed Link
山田裕一
Others, Japanese, 早大理工トポロジーセミナー
Jul. 2003 - レンズ空間を生み出すある結び目族と平面曲線
山田裕一
Others, Japanese, 埼玉大学木曜セミナー
Apr. 2003 - Trefoil の Seifert 膜に乗る knots とレンズ空間
山田裕一
Others, Japanese, 日本数学会年会 東京大学, 日本数学会年会 東京大学
Mar. 2003 - Trefoil の Seifert 膜に乗る knots とレンズ空間
山田裕一
Others, Japanese, 日本数学会年会 東京大学
Mar. 2003 - Berge's knots and framed links
Yuichi YAMADA
Oral presentation, English, The 10th Japan-Korea School of Knots and Links
Feb. 2003 - Berge's knots and framed links
Yuichi YAMADA
Oral presentation, English, The 10th Japan-Korea School of Knots and Links, The 10th Japan-Korea School of Knots and Links
Feb. 2003 - Torefoil の Seifert 膜に乗る knots とレンズ空間(講演)
山田裕一
Oral presentation, Japanese, 山形大学 東北結び目セミナー
Jan. 2003 - Torefoil の Seifert 膜に乗る knots とレンズ空間(講演)
山田裕一
Others, Japanese, 山形大学 東北結び目セミナー
Jan. 2003 - 4次元多様体内の曲面のある変形族 と 分岐被覆(講演)
山田裕一
Others, Japanese, 広島大学 研究集会「4次元のトポロジー」, 広島大学 研究集会「4次元のトポロジー」
Jan. 2003 - 4次元多様体内の曲面のある変形族 と 分岐被覆(講演)
山田裕一
Oral presentation, Japanese, 広島大学 研究集会「4次元のトポロジー」, 広島大学 研究集会「4次元のトポロジー」
Jan. 2003 - 球面的3次元多様体から構成した4次元可微分多様体(講演)
山田裕一
Others, Japanese, 京都大学理学部数学教室 微分トポロジーセミナー
Dec. 2002 - Iterated torus knots and positive definite 4-maniflds
Others, English, 東工大トポロジーセミナー
May 2002 - Lissajous curves as A'Campo divides, torus knots and their fiber surfaces
Hiroshi GODA; Mikami Hirasawa; Yuichi YAMADA
Others, English, 九州大学 トポロジーセミナー
Apr. 2002 - 2-component Links of projective planes and Price surgery
山田裕一
Oral presentation, Japanese, 日本数学会秋期総合分科会 九州大学
Oct. 2001 - 「Kirby Calculus と4次元多様体の構成・切貼り」 「Loi-Piergallini 論文周辺の話」(連続講演)
山田裕一
Others, Japanese, 京都大学数理解析研究所 短期共同研究 「低次元トポロジーと接触幾何」
Oct. 2001 - Relative Kirby diagramsと4次元多様体の切り貼り
山田裕一
Oral presentation, Japanese, 京都大学数理解析研究所 短期共同研究 「4次元多様体と曲面の埋め込み」
Jul. 2001 - Relative Kirby diagramsと4次元多様体の切り貼り
山田裕一
Oral presentation, Japanese, 京都大学数理解析研究所 短期共同研究 「4次元多様体と曲面の埋め込み」, 京都大学数理解析研究所 短期共同研究 「4次元多様体と曲面の埋め込み」
Jul. 2001 - Projective planes in 4-mainfolds and surgery along them
YAMADA Yuichi
Oral presentation, English, 数理解析研究所 プロジェクト研究 「低次元トポロジーにおける幾何的手法に関するセミナー」
Jun. 2001 - Projective planes in 4-mainfolds and surgery along them
YAMADA Yuichi
Oral presentation, English, 数理解析研究所 プロジェクト研究 「低次元トポロジーにおける幾何的手法に関するセミナー」, 数理解析研究所 プロジェクト研究 「低次元トポロジーにおける幾何的手法に関するセミナー」
Jun. 2001 - 2成分射影平面絡み目の手術による変換
山田裕一
Oral presentation, Japanese, 京都大学数理解析研究所 短期共同研究 「変換群論の視点から見た諸幾何構造」
May 2001 - 2成分射影平面絡み目の手術による変換
山田裕一
Others, Japanese, 京都大学数理解析研究所 短期共同研究 「変換群論の視点から見た諸幾何構造」
May 2001 - 4次元多様体内の射影平面に沿うSurgery
山田裕一
Oral presentation, Japanese, 研究集会「いろいろなカテゴリーでの多様体のトポロジーと特異点」,和歌山市民会館
Sep. 1999 - 「4次元多様体の手術」
山田裕一
Others, Japanese, 埼玉大学理学部数学教室談話会
Nov. 1998 - 2-Knotに沿うGluck surgeryとRP^2-Knot exteriorの貼り合わせ
山田裕一; 佐伯 修; 寺垣内政一; 片長敦子
Oral presentation, Japanese, 数理解析研究所講究録1050,「局所的及び大域的特異点論の研究」
Jun. 1998 - Decomposition of the four sphere as a union of RP^2-Knot exteriors
Others, English, Proceedings of Applied Mathematics Work shop 8. The fifth Korea-Japan School of Knots and Links, Taejeon
1997
Courses
- 幾何学基礎論(社会人修士)
The University of Electro-Communications - 幾何学基礎論(社会人修士)
電気通信大学 - 幾何学概論(I類)
The University of Electro-Communications - 幾何学概論(I類)
電気通信大学 - 微分積分学第二
The University of Electro-Communications - 微分積分学第二
電気通信大学 - 幾何学概論
The University of Electro-Communications - 幾何学特論
The University of Electro-Communications - 幾何学基礎論
The University of Electro-Communications - 幾何学基礎論
電気通信大学 - 幾何学概論
The University of Electro-Communications - 幾何学概論
電気通信大学 - 応用幾何学K
The University of Electro-Communications - 幾何学特論
The University of Electro-Communications - 幾何学特論
電気通信大学 - 応用幾何学K
The University of Electro-Communications - 応用幾何学K
電気通信大学 - 線形代数学第二
The University of Electro-Communications - 応用幾何学
The University of Electro-Communications - 応用幾何学
The University of Electro-Communications - 応用幾何学
電気通信大学 - 線形代数学第一
The University of Electro-Communications - 線形代数学第一
The University of Electro-Communications - 線形代数学第一
電気通信大学 - 線形代数学第二
The University of Electro-Communications - 線形代数学第二
電気通信大学
Research Themes
- Exceptional Dehn surgeries on 3-manifolds, and 4-manifolds
山田 裕一
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), デーン手術によって双曲的な結び目から“例外的に”双曲的でない3次元多様体が生じる現象は「例外的手術」と呼ばれる低次元多様体論の1つの課題である。筆者はこの現象に関連して特殊な4次元多様体を構成・分析することを研究目標としている。研究開始の令和3年度はコロナ禍がより深刻にかつ長引き、ほぼすべての研究集会がオンライン開催となった。本務先では数学部会長として採用人事に取り組み、3年間続いた減員状態をようやく脱した。これらにより研究の遂行には辛い1年間であったが、いくつかの研究活動を行うことができた。以下、それらを具体的に述べる:1. レンズ空間を生じる結び目のディバイド曲線表示のうち最後まで残っていた課題(VIII型と呼ばれる結び目族の具体的表示)について、計算機を利用した実験で、当初推測していた形状は正しくないことが判明した。この成果を研究集会「4次元トポロジー」および国際研究集会「The 17th East Asian Conference of Geometric Topology」で講演した。2. 丹下氏(筑波大)と安部氏(立命館大)が主催したオンライン研究集会「微分トポロジー22」のテーマは「デーン手術」であった。筆者は最終講演の機会を与えられ、VII型,VIII型のレンズ空間手術に関連する研究を、特に4次元多様体からの興味に主眼をおいて、自分の過去の成果を軸にしつつ最新の研究動向についても勉強して、講演した。 筆者は元々自宅より研究室で研究する様式で、在宅勤務の増えた現在の研究活動に慣れないが、これからはコロナ禍を乗り越える新しい研究生活様式を模索する必要があると考えて努力した。上記の1.は研究の進展としては新たな課題の発見である。2成分絡み目の例外的デーン手術の分布に関する執筆準備中の論文もある。これらの課題を中心に本研究課題に取り組みたい。, 21K03221
Apr. 2021 - Mar. 2026 - Homotopy types of spaces of rational curves on a toric manifold and related geometry
YAMAGUCHI Kohhei
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), For complex manifolds X and Y (resp. real algebraic varieties X and Y), let Hol(X,Y) (resp. Alg(X,Y)) denote the space of all holomorphic maps (resp. regular maps) from X to Y. When we denote by Map(X,Y) the space of continuous maps from X to Y, we consider what dimension the finite dimensional subspace Hol(X,Y) (resp. Alg(X,Y)) approximates the homotopy type of the infinite dimensional space Map(X,Y). This problem is usually called the Atiyah-Jones-Segal conjecture. In this research we mainly consider the case for the Riemann surface X (resp. 1 dimensional sphere) and a toric variety Y. We also investigate the analogues problem for several related spaces defined from the resultants., 18K03295
01 Apr. 2018 - 31 Mar. 2022 - Surgery on 4-manifolds by exceptional Dehn surgery on 3-manifold
YAMADA Yuichi
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), Phenomenon that a Dehn surgery along a hyperbolic knot in the 3-shpere yields a non-hyperbolic manifold is called "exceptional surgery" and is a subject in the topology of low-dimensional manifolds. We are interested in construction and surgery on 4-manifolds related to exceptional Dehn surgeries. Results : Distributions of integral coefficient exceptional surgeries along Akbulut-Yasui link, including the Mazur link, are decided. Divide presentation of knots in the minor subfamily is considered, and is published in a paper. As research action, I attended almost all workshops "Differential topology” and "handle seminor"., 16K05143
Apr. 2016 - Mar. 2022 - Applications of real singularity theory and the homotopy types of spaces of holomorphic maps
YAMAGUCHI Kohhei
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), For complex manifolds X and Y (resp. real algebraic varieties X and Y), let Hol(X,Y) (resp. Alg(X,Y)) denote the space of holomorphic maps (resp. algebraic maps represented by polynomials) from X to Y. In this situation, we consider the inclusion map from Hol(X,Y) or Alg(X,Y) into the space Map(X,Y) of all continuous maps from X to Y, and we would like to investigate what dimension this inclusion map approximates the infinite dimensional space Map(X,Y). This problem is called the Atiyah-Jones-Segal conjecture. In particular, in this research we generalize the result of G. Segal concerning to the space of rational functions., 26400083
01 Apr. 2014 - 31 Mar. 2018 - RESEARCH OF TOPOLOGY RELATED THE MORSE THEORY AND RESEARCH OF COMPUTER ALGRBRA SYSTEM
YAMAGUCHI Kohhei; NAITO Toshiki; KIDA Masanari; OHNO Masahiro; YAMADA Yuichi; ISHIDA Haruhisa
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), 一般に、写像空間は無限次元位相空間であり、その空間の位相的性質を研究するのは難しい。本研究では、無限次元モース理論の原理を利用して、特に空間X,Yが実代数的多様体(実数係数の多変数多項式の零点集合で表現される特異点のない空間)の間の写像空間のホモトピー型を研究した。とくに、空間Yがグラスマン多様体で、空間Xが、その上のベクトル束がある条件を満足するとき、写像空間Map(X,Y)をその間の代数的写像のなす部分空間Alg(X,Y)でホモトピー的に近似できるという結果を証明できた。このことにより、Gromovのホモトピー原理が成り立つことを証明できた。さらに、空間X,Yが実射影空間の場合にその有限次元近似の次元を多項式の次数と関連した公式で表すこと(Atiyah-Jones型定理)にも成功した。, 19540068
2007 - 2009 - Topology related to Mathematical Physics, Morse Theory and Numerical Computations
YAMAGUCHI Kohhei; NAITO Toshiki; KIDA Masanari; OHNO Masahiro; YAMADA Yuichi; ISHIDA Haruhisa
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), Previously, Professors M.Guest, A.Kozlowski and the author showed that the Atiyah-Jones-Segal type Theorem holds for spaces of holomorphic maps from the 1 dimensional complex projective space to certain family of complex projective varieties. Now he showed that a similar result holds for certain subspaces of them which are defined by using the concept of multiplicities induced from the representations of polynomials of holomorphic maps. Furthermore, he computed the fundamental groups for spaces of self-holomorphic maps on the n dimensional complex Projective spaces. Until now, we usually investigate whether AJS type Theorem holds or not for spaces of holomorphic (or algebraic) maps from one real dimensional (or complex one dimensional) spaces. In our investigation, now we can investigate whether such a problem for spaces of holomorphic or algebraic maps from high dimensional spaces. As one example, we can show that the spaces of regular maps from certain compact affine spaces into complex or real Grassmanian manifolds are homotopy equivalent of spaces of continuous maps between these spaces if these varieties Affine spaces satisfy certain conditions of vector bundles, which is one of joint works with Professor A. Kozlowski. To prove these results, we use the technique of real algebraic geometry. Moreover, we can prove that AJS type Theorem holds for such spaces by using the above Theorem. In particular, we also determine the fundamental groups of spaces of maps from m dimensional real projective space into n dimensional one when m=n-1, or m=n. Such a result can be regarded as a real version of the study investigated in the above first case. We also study the exceptional surgery from the new point view of singularity theory by using the divide theory. In particular, we study the mechanism of such surgeries and the structure of the set of exceptional surgeries., 16540056
2004 - 2006 - 3次元多様体の例外的手術から生じる4次元多様体
01 Apr. 2003 - 31 Mar. 2005 - Topology related to Valuation problems and Numerical Computations
YAMAGUCHI Kohei; OHNO Masahiro; KIDA Masanari; NAITO Toshiki; ISHIDA Haruhisa; YAMADA Yuichi
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Communications, Grant-in-Aid for Scientific Research (C), Consider the energy functionals E on spaces consisting of all smooth maps from a Riemann surface to complex projective spaces. In this case, it is very important to study the spaces consisting of all critical points of E.K.Yamaguchi suceeds to define a finite dimensional homotopy configuration space models from a Riemann surface of genus g into a complex projective space for g>O. He also obtains a similar result for the space of algebraic maps between real projective spaces. Moreover, he shows that a homotopy asymptic stability theorem holds for such spaces of algebraic maps. Kida studies elliptic curves and algebraic field extensions associated to certain maps on algebraic torus. As an application he obtains an easy method for checking prime numbers. M.Ohno studied the vector bundles over non-singular projective varieties and investigated them from the point of view of "nef value". Y.Yamada studied the topology of 4-manifolds and obtained several results related to Gluck surgery., 13640067
2001 - 2003 - Topology related to Mathematical Physics and Numerical Computations
KOHHEI Yamaguchi; OHNO Masahiro; KIDA Masonari; NAITO Toshiki; YAMADA Yuichi; MISAWA Masashi
Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research, The University of Electro-Commnications, Grant-in-Aid for Scientific Research (C), The main purpose of K.Yamaguchi is to study the topologies of labelled configuration spaces. Nowdays he and Kozlowski found that the Morse theoretic principle holds for the space P^d_n(C), where P^d_n(C) denotes the space consisting of all monic polynomials f(z) ∈ C [z] of dgree d without real roots of multiplicity 【greater than or equal】 n. It follows from the above results that we knew that Morse theoretic principle (which is also called as Smale-Hirsh principle) holds for these cases and that it also sometimes holds even in the infinite dimensional cases. Similarly, we investigated the topology of spaces of holomorphic maps from Riemann surface to complex projective space with bounded multiplicity case. In this case, we found that similar Morse theoretic principle also holds. Finally, concerning to the latter subject, he noticed the group structure of the group of self- homotopy equivalences of SO(4) and published it too. M.Ohno studied the vector bundles over non-singular projective varieties and investigated them from the point of view of "nef value". Y.Yamada studied the topology of 4-manifolds and obtained several results related to Gluck surgery. M.Misawa studied the valation principle related to harmonic maps from the point of view of partial differential equation. In particular, he found the existence and regurality of p-harmonic maps (weak solution)., 11640066
1999 - 2000