Naoya ENOMOTO

Department of InformaticsAssociate Professor
Cluster II (Emerging Multi-interdisciplinary Engineering)Associate Professor
Division of General Education(School of Informatics and Engineering )Associate Professor
Division of General Education(Graduate School of Informatics and Engineering)Associate Professor
Researcher Information

Degree

  • 博士(理学), 京都大学

Research Keyword

  • 対称多項式
  • Johnson準同型
  • 写像類群
  • 結晶基底
  • ヘッケ環
  • 量子群
  • 表現論

Field Of Study

  • Natural sciences, Algebra

Career

  • Feb. 2014
    電気通信大学 情報理工学研究科, 准教授
  • Apr. 2013 - Jan. 2014
    奈良女子大学 理学部 数学科, 特任助教
  • Aug. 2009 - Mar. 2013
    京都大学 理学研究科 数学教室, 特定助教(グローバルCOE)
  • Jun. 2009 - Jul. 2009
    京都大学 数理解析研究所, 教務補佐員

Educational Background

  • Apr. 2005 - May 2009
    Kyoto University, Graduate School, Division of Natural Science, 数学・数理解析専攻 数理解析系
  • Apr. 1999 - Mar. 2003
    Kyoto University, Faculty of Science, 理学科 数学専攻
Research Activity Information

Paper

  • New series in the Johnson cokernels of the mapping class groups of surfaces
    Naoya Enomoto; Takao Satoh
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 14, 2, 627-669, 2014, Peer-reviwed
    Scientific journal, English
  • Sp-Irreducible Components in the Johnson Cokernels of the Mapping Class Groups of Surfaces, I
    Hikoe Enomoto; Naoya Enomoto
    JOURNAL OF LIE THEORY, 24, 3, 687-704, 2014, Peer-reviwed
    Scientific journal, English
  • On the derivation algebra of the free Lie algebra and trace maps
    Naoya Enomoto; Takao Satoh
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 11, 5, 2861-2901, 2011, Peer-reviwed
    Scientific journal, English
  • A Quiver Construction of Symmetric Crystals
    Naoya Enomoto
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 12, 12, 2200-2247, 2009, Peer-reviwed
    Scientific journal, English
  • Composition factors of polynomial representation of DAHA and q-decomposition numbers
    Naoya Enomoto
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 49, 3, 441-473, 2009, Peer-reviwed
    Scientific journal, English
  • Symmetric crystals for $gl_\infty$
    榎本直也; 柏原正樹
    Publ. Res. Inst. Math. Sci., 44, 3, 837-891, 2008, Peer-reviwed
    Scientific journal, English
  • Symmetric crystals and affine Hecke algebras of type B
    Naoya Enomoto; Masaki Kashiwara
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 82, 8, 131-136, Oct. 2006, Peer-reviwed
    Scientific journal, English
  • Classification of the irreducible representations of the affine Hecke algebra of type B-2 with unequal parameters
    Naoya Enomoto
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 46, 2, 259-273, 2006, Peer-reviwed
    Scientific journal, English

Courses

  • Fundamentals of Algebra
    The University of Electro-Communications
  • 代数学基礎論
    電気通信大学
  • Introduction to Modern Mathematics B
    The University of Electro-Communications
  • 現代数学入門B
    電気通信大学
  • Linear Algebra I
    The University of Electro-Communications
  • Advanced Topics in Algebra
    The University of Electro-Communications
  • 代数学特論
    電気通信大学
  • Exercise in Mathematics Ⅱ
    The University of Electro-Communications
  • 数学演習第二
    電気通信大学
  • Linear Algebra II
    The University of Electro-Communications
  • 線形代数学第二
    電気通信大学
  • Linear Algebra I(A)
    Nara Women’s University
  • 線形代数学Ⅰ(A)
    奈良女子大学
  • Exercise in Mathematics Ⅰ
    The University of Electro-Communications
  • 数学演習第一
    電気通信大学
  • Linear Algebra Ⅰ
    The University of Electro-Communications
  • 線形代数学第一
    電気通信大学
  • 数学特別講義I
    奈良女子大学
  • 数学特別講義I
    奈良女子大学
  • 解析概論II
    奈良女子大学
  • 解析概論II
    奈良女子大学
  • 線型代数学演習A,B
    京都大学
  • 線型代数学演習A,B
    京都大学
  • 集合・位相演習
    奈良女子大学
  • 集合・位相演習
    奈良女子大学
  • 線形代数学B[再履修]
    京都大学
  • 線形代数学B[再履修]
    京都大学
  • 線型代数学演習B
    京都大学
  • 線型代数学演習B
    京都大学